
FINAL FORMAT (DO NOT DELETE) 7/18/2017 2:40 PM

FUNCTIONALITY AND EXPRESSION IN COMPUTER
PROGRAMS: REFINING THE TESTS FOR SOFTWARE

COPYRIGHT INFRINGEMENT
Pamela Samuelson†

ABSTRACT

Courts have struggled for decades to develop a test for judging infringement claims in
software copyright cases that distinguishes between program expression that copyright law
protects and program functionality for which copyright protection is unavailable. The case
law thus far has adopted four main approaches to judging copyright infringement claims in
software cases. One, now mostly discredited, test would treat all structure, sequence, and
organization (SSO) of programs as protectable expression unless there is only one way to
perform a program function. A second, now widely applied, three-step test calls for
creating a hierarchy of abstractions for an allegedly infringed program, filtering
unprotectable elements, and comparing the protectable expression of the allegedly
infringed program with the expression in the second program that is the basis of the
infringement claim. A third approach has focused on whether the allegedly infringing
elements are program processes or methods of operation that lie outside the scope of
protection available from copyright law. A fourth approach has concentrated on whether
the allegedly infringing elements of a program are instances in which ideas or functions
have merged with program expression. This Article offers both praise and criticism of the
approaches taken thus far to judging software copyright infringement and proposes an
alternative unified test for infringement that is consistent with traditional principles of
copyright law and that will promote healthy competition and ongoing innovation in the
software industry.

 DOI: https://dx.doi.org/10.15779/Z38WW76Z83
 © 2016 Pamela Samuelson.
 † Richard M. Sherman Distinguished Professor of Law, Berkeley Law School. I am
very grateful to Kathryn Hashimoto for excellent research for and editing of this article. I
am also grateful to Clark Asay, Jonathan Band, Joshua Bloch, Oren Bracha, Dan Burk,
Julie Cohen, Joe Craig, Charles Duan, Shubha Ghosh, Ariel Katz, Peter Lee, Mark Lemley,
Glynn Lunney, Corynne McSherry, Christina Mulligan, Aaron Perzanowski, Michael
Risch, Christopher Jon Sprigman, Fred von Lohmann, and Phil Weiser for comments on
an earlier draft of this article. I also wish to thank Lionel Bently for the opportunity to give
the 10th Annual International IP Lecture at Emanuel College at Cambridge University on
which this Article was initially based.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1216 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

TABLE OF CONTENTS

I. INTRODUCTION .. 1217

II. THE ABSTRACTION-FILTRATION-COMPARISON
TEST ... 1224

A. THE ROCKY ROAD TO ALTAI .. 1225
B. THE ALTAI DECISION AND THE AFC TEST 1230
C. A CLOSER LOOK AT ALTAI’S FILTRATION FACTORS 1232

III. CONCEPTUALIZING THE PROPER ROLE OF § 102(b) IN
COMPUTER PROGRAM COPYRIGHT CASES 1237

A. FIVE UNCONTROVERSIAL PROPOSITIONS ABOUT § 102(b) 1238
1. Section 102(b) Does Not Exclude Program Code

from Protection ... 1238
2. The Procedure, Process, System and Method of

Operation Exclusions of § 102(b) Must Mean
Something .. 1239

3. The Process and System Exclusions of § 102(b) Are
Partly Aimed at Maintaining Boundaries between
Copyright and Patent Laws ... 1241

4. Because of § 102(b) Exclusions, the Scope of
Copyright in Programs Is Thinner than the Scope of
Copyright in Conventional Literary Works 1243

5. SSO Obscures the Distinction between Nonliteral
Elements of Programs That Are Protectable by
Copyright and Those That Are Unprotectable Under
§ 102(b) ... 1244

6. Summary.. 1245
B. LOTUS V. BORLAND ... 1245
C. ORACLE V. GOOGLE .. 1252
D. THE IMPLICATIONS OF § 102(b) FOR COMPATIBILITY

DEFENSES .. 1258

IV. FUNCTIONALITY AND EXPRESSION SOMETIMES
MERGE IN SOFTWARE CASES ... 1267

A. ORIGINS OF THE MERGER DOCTRINE .. 1268
B. THE ROLE OF THE MERGER DOCTRINE IN ARCHITECTURAL

WORK AND SOFTWARE CASES .. 1270
C. MERGER MAY BE FOUND WHEN A PLAINTIFF’S DESIGN

CHOICES SERVE AS CONSTRAINTS ON THE CHOICES

AVAILABLE TO SECOND COMERS .. 1275
D. SOMETIMES PROGRAM FUNCTIONS MERGE WITH PROGRAM

CODE .. 1278

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1217

E. THE CAFC ERRED IN INTERPRETING THE MERGER

DOCTRINE .. 1280

V. DIFFERENT CONCEPTUALIZATIONS ON THE
RELATIONSHIP BETWEEN PATENT AND COPYRIGHT
PROTECTIONS FOR SOFTWARE ... 1284

A. REASONS TO BE CAUTIOUS OF CATEGORICAL EXCLUSIVITY

ARGUMENTS ABOUT PATENT AND COPYRIGHT

PROTECTIONS FOR SOFTWARE INNOVATIONS 1286
B. THE ORACLE DECISION’S ANALYSIS OF COPYRIGHT-

PATENT BOUNDARIES WAS FLAWED .. 1289
C. AN ALTERNATIVE APPROACH TO CONCEPTUALIZING THE

ROLES OF COPYRIGHTS AND PATENTS IN PROTECTING

SOFTWARE INNOVATIONS.. 1291
D. SOFTWARE DEVELOPERS ATTAIN COMPETITIVE

ADVANTAGE BEYOND IP RIGHTS .. 1293

VI. REFINING THE TEST FOR SOFTWARE COPYRIGHT
INFRINGEMENT .. 1294

I. INTRODUCTION

The paradigmatic roles of copyright and patent laws have been,
respectively, to protect original authorial expressions from illicit copying,
and to protect novel and nonobvious functional designs (if they have been
appropriately claimed and examined by patent officials) from illicit uses.1
It would be convenient if copyright law could be assigned the role of
protecting the expression in computer programs and patent law the role of
protecting program functionality. While courts continue to try to distinguish
between program expression and program functionality, this distinction has
proven elusive in the decades since Congress decided to extend copyright
protection to computer programs.2

 1. See J.H. Reichman, Legal Hybrids Between the Patent and Copyright Paradigms,
94 COLUM. L. REV. 2432, 2448–53 (1994) (describing the classical patent and copyright
paradigms in the international intellectual property system).
 2. While some claim that Congress extended copyright protection to computer
programs when it enacted the Copyright Act of 1976, there is some ambiguity in the
legislative history on this point. Compare FINAL REPORT OF THE NAT’L COMM’N ON NEW
TECHNOLOGICAL USES OF COPYRIGHTED WORKS 15–16 (1978) [hereinafter CONTU
REPORT] (concluding that Congress had extended copyright protection to software in 1976)
with Pamela Samuelson, CONTU Revisited: The Case Against Copyright Protection for
Computer Programs in Machine-Readable Form, 1984 DUKE L.J. 663, 694–96 (1984)
(suggesting that § 117 in the 1976 Act preserved the status quo of unprotectability under

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1218 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

In the years preceding the enactment of the Copyright Act of 1976,3
members of Congress were warned that the functionality of computer
programs would make it difficult to fit them into the copyright realm.4
However, lingering concerns about the potential misfit were for a time
allayed by a 1978 National Commission on New Technological Uses of
Copyrighted Works (CONTU) report that endorsed copyright protection for
programs.5 CONTU observed that “the distinction between copyrightable
computer programs and uncopyrightable processes or methods of operation
does not always seem to ‘shimmer with clarity,’” but it was nevertheless
“important that the distinction between programs and processes be made
clear.”6 The report expressed optimism that traditional principles of
copyright law, when applied to programs, would strike the right balance,7
and it was content to leave the difficult (and perhaps “futile”) task of

the prior act as to computer-related subject matters). However, any such ambiguity was
resolved by 1980 amendments to the Copyright Act of 1976 (1976 Act), which
implemented legislative changes that CONTU recommended in its report. See Pub. L. No.
96-517, 94 Stat. 3015 (codified at 17 U.S.C. §§ 101, 117 (1980)).
 3. Pub. L. No. 94-553, 90 Stat. 2541 (1976), codified at 17 U.S.C. § 101, et seq.
 4. See Hearings Before the Subcomm. on Patents, Trademarks, and Copyrights of
the S. Comm. on the Judiciary Pursuant to S. Res. 37 on S. 597, 90th Cong. 192–97 (1967),
reprinted in 9 OMNIBUS COPYRIGHT REVISION LEGISLATIVE HISTORY 192–97 (George S.
Grossman ed., 1976) (testimony of Professor Arthur Miller). Miller expressed concern that
courts might construe copyright protection for programs as “extend[ing] to or embody[ing]
the process, scheme, or plan that the program uses to achieve a functional goal,” saying
this would confer “patent like protection under the guise of copyright.” Id. at 197. Congress
responded to these concerns by adopting a provision stating that “[i]n no case does
copyright protection for an original work of authorship extend to any . . . procedure,
process, system [or] method of operation . . . regardless of the form in which it is . . .
embodied in such work.” 17 U.S.C. § 102(b) (2012). This provision is discussed at length
infra Part III.
 5. CONTU REPORT, supra note 2, at 1–2. CONTU acknowledged that there was not
“universal agreement” about copyright protection for software. Id. at 20–21. See also
Stephen Breyer, The Uneasy Case for Copyright: A Study of Copyright in Books,
Photocopies, and Computer Programs, 84 HARV. L. REV. 281, 344–46 (1970) (questioning
the economic case for extending copyright protection to computer programs). While
CONTU was deliberating about new technology issues, the World Intellectual Property
Organization was considering a sui generis form of intellectual property protection for
software. See WORLD INTELLECTUAL PROP. ORG., INT’L BUREAU, MODEL PROVISIONS ON
THE PROTECTION OF COMPUTER SOFTWARE (1978). Whether computer programs should be
protected by copyright law was not part of CONTU’s original charter, which mainly
focused on photocopying and digitizing published texts. See Samuelson, CONTU
Revisited, supra note 2, at 663 n.2, 699. That may explain why none of the Commissioners
had any expertise about computers or computer programs. Id. at 699.
 6. CONTU REPORT, supra note 2, at 18.
 7. See id. at 12–23. CONTU thought copyright should grant no more economic
power than was needed to create proper incentives to create software. Id. at 12.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1219

drawing boundaries between program expression and functionality to the
judiciary.8 Unfortunately, CONTU failed to fully understand the intrinsic
functionality of computer programs, the importance of standards and
network effects in the software industry, and the inherent need to develop
software capable of interoperating with other programs. It also failed to
offer guidance on how, when, and why functionality should constrain the
scope of copyright protection in programs.9

Commentators have debated for decades how much legal protection
software developers should get from copyright law in order to induce
optimal levels of investment in the development of computer programs.10
Some have worried that copyright protection for programs might either be
too “weak” if infringement could be easily avoided by rewriting the same

 8. Id. at 22–23.
 9. According to CONTU, programs were no more functional than sound recordings,
id. at 10, which was simply not true. After all, the inherent purpose of computer programs
is to automate functional processes, whereas the purpose of sound recordings is to allow
users to listen to music. See id. at 27–29 (Hersey dissent distinguishing program
functionality from other copyrighted works). CONTU also asserted that utility had never
been a bar to the copyrightability of a work or a limit on the scope of protection available
to protected works, id. at 19–21, which was also untrue. See Samuelson, CONTU Revisited,
supra note 2, at 732–39 (explaining reasons why utilitarian works have conventionally
been excluded from copyright protection); see also Peter S. Menell, Tailoring Legal
Protection for Computer Software, 39 STAN. L. REV. 1329, 1359–61 (1987) (offering other
reasons why copyright protection is inappropriate for operating system software).
 10. From the late 1980s to the late 1990s, scholars produced an extensive literature
about copyright protection for computer programs, particularly their nonliteral elements.
See, e.g., Jane C. Ginsburg, Four Reasons and a Paradox: The Manifest Superiority of
Copyright over Sui Generis Protection of Computer Software, 94 COLUM. L. REV. 2559
(1994); Dennis S. Karjala, Copyright, Computer Software, and the New Protectionism, 28
JURIMETRICS J. 33 (1987); Peter S. Menell, An Analysis of the Scope of Copyright
Protection for Application Programs, 41 STAN. L. REV. 1045 (1989); Arthur R. Miller,
Copyright Protection for Computer Programs, Databases, and Computer-Generated
Works: Is Anything New Since CONTU?, 106 HARV. L. REV. 977 (1993); J.H. Reichman,
Computer Programs as Applied Scientific Know-How: Implications of Copyright
Protection for Commercialized University Research, 42 VAND. L. REV. 639 (1989);
Pamela Samuelson et al., A Manifesto Concerning the Legal Protection of Computer
Programs, 94 COLUM. L. REV. 2308 (1994); Lloyd L. Weinreb, Copyright for Functional
Expression, 111 HARV. L. REV. 1150 (1998); Steven R. Englund, Note, Idea, Process, or
Protected Expression?: Determining the Scope of Copyright Protection of the Structure of
Computer Programs, 88 MICH. L. REV. 866 (1990). Especially influential was a law review
article, later incorporated into the Nimmer treatise. See David Nimmer et al., A Structured
Approach to Analyzing Substantial Similarity of Computer Software in Copyright
Infringement Cases, 20 ARIZ. ST. L.J. 625 (1988); MELVILLE B. NIMMER & DAVID
NIMMER, NIMMER ON COPYRIGHT § 13.03 [F](2015) [hereinafter NIMMER ON COPYRIGHT];
see also JONATHAN BAND & MASANOBU KATOH, INTERFACES ON TRIAL (1995); JONATHAN
BAND & MASANOBU KATOH, INTERFACES ON TRIAL 2.0 (2011).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1220 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

program in different source code, or too “strong” if programmers felt
compelled to do things differently than an existing program in order to avoid
infringement, thereby impeding beneficial standardization.11 That concern
has manifested itself in the software copyright cases that followed.

Appellate courts have taken four main approaches to distinguishing the
original expression in computer programs from program functionality. A
first-in-time, but now much discredited, approach was adopted by the Third
Circuit Court of Appeals in Whelan Associates v. Jaslow Dental Lab., Inc.,
under which the “structure, sequence, and organization” (SSO) of computer
programs was deemed protectable expression unless there was only one way
to perform a function (in which case a second comer could use the same
SSO under the merger of idea and expression doctrine).12

A second was the Second Circuit Court of Appeals’ approach in
Computer Associates Int’l, Inc. v. Altai, Inc.13 The Altai decision was highly
critical of Whelan and its test for software copyright infringement.14 As an
alternative, Altai offered the abstraction-filtration-comparison (AFC) test
for judging copyright infringement claims in computer program cases.15
Altai’s principal contribution has been its insistence that courts must “filter”
out unprotectable elements of programs, such as those necessary for
achieving interoperability with other programs, before assessing
infringement claims.16 The AFC test has been adopted and applied in
numerous subsequent cases.17

 11. See, e.g., Breyer, supra note 5, at 347–48; see also Samuelson et al., Manifesto,
supra note 10, at 2356–63 (explaining why applying copyright law to computer programs
might lead to cycles of under- and over-protection).
 12. 797 F.2d 1222, 1236, 1248 (3d Cir. 1986), cert. denied, 479 U.S. 1031 (1987).
Whelan is discussed infra text accompanying notes 53–70.
 13. 982 F.2d 693 (2d Cir. 1992).
 14. Altai’s criticism of Whelan is discussed infra text accompanying notes 82–85.
 15. Altai, 982 F.2d at 706–11.
 16. Id. at 707–10.
 17. The Altai approach to software copyright infringement has been endorsed in
numerous other circuit court decisions. See, e.g., Sega Enters. Ltd. v. Accolade, Inc., 977
F.2d 1510, 1524–25 (9th Cir. 1992); Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823,
834 (10th Cir. 1993); Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1543–44 (11th Cir.
1996). As of July 6, 2015, Altai had been positively cited in 389 federal court decisions on
the subject of copyright in the Lexis database and had been cited in all circuits. See also
Mark A. Lemley, Convergence in the Law of Software Copyright?, 10 BERKELEY TECH.
L.J. 1, 14–15 (1995) (treating Altai as the leading case on copyright protection for computer
programs).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1221

A third approach was used by the First Circuit Court of Appeals in Lotus
Dev. Corp. v. Borland Int’l, Inc.18 Borland ruled that the command
hierarchy of a spreadsheet program was an integral part of a method of
operation that 17 U.S.C. § 102(b) excluded from the scope of copyright
protection in programs.19 The court compared the Lotus command structure
to the clearly uncopyrightable set of buttons that control the operation of
videotape machines.20

A fourth approach emerged in the Sixth Circuit Court of Appeals’
decision in Lexmark Int’l, Inc. v. Static Control Components.21 The court
decided that a computer program embedded in Lexmark’s printer cartridges
that competitors had to install to enable cartridges to interoperate with
Lexmark printers was ineligible for copyright protection.22 Because the idea
or function of the program and its expression had merged, the program was
held to be uncopyrightable.23

 A common thread through the Altai, Borland, and Lexmark decisions
is that copyright infringement does not occur when a second comer must
copy some aspects of another firm’s program to achieve compatibility.
Courts have deemed the functional requirements for achieving
compatibility to be unprotectable elements of these copyrighted programs,
even though more than a modicum of creativity may have imparted
originality to these elements.

The seeming consensus that program interfaces necessary for
interoperability are unprotectable by copyright law was recently called into
question by the Court of Appeals for the Federal Circuit (CAFC) in Oracle
Am., Inc. v. Google Inc.24 At issue was whether the command structure of
certain elements of the Java application program interface (API) was
protectable by copyright law. The CAFC reversed a lower court ruling that
this command structure was an unprotectable method of operation, or

 18. 49 F.3d 807, 814–15 (1st Cir. 1995), aff’d by an equally divided Court, 516 U.S.
233 (1996)
 19. Id. at 815–18. That section provides that “[i]n no case does copyright protection
for an original work of authorship extend to any . . . procedure, process, system [or] method
of operation . . . regardless of the form in which it is . . . embodied in such work.” 17 U.S.C.
§ 102(b). The Borland decision is discussed at length in Section III.B.
 20. Borland, 49 F.3d at 817.
 21. 387 F.3d 522 (6th Cir. 2004).
 22. Id. at 542–43.
 23. Id. at 541–42. The Lexmark decision is discussed in Section IV.D.
 24. 750 F.3d 1339 (Fed. Cir. 2014), cert. denied, 135 S. Ct. 2887 (2015). The CAFC’s
Oracle decision is discussed at length in Sections III.C & D, Section IV.E, and Section
V.B.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1222 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

alternatively that copyright protection was unavailable under the merger
doctrine.25

Although the CAFC in Oracle purported to defer to Altai,26 the ghost of
the discredited Whelan decision reappeared in the CAFC’s endorsement of
the copyrightability of program SSO.27 Like the Third Circuit in Whelan,
the CAFC in Oracle viewed § 102(b) as merely a restatement of the
idea/expression distinction and treated the merger doctrine as applicable
only when there was, ex ante, no other way for engineers to design this or
other program SSO.28 The CAFC was untroubled by the prospect that
software developers might obtain both patent and copyright protection for
APIs of computer programs.29 There was, in its view, no need to sort out
functionality and expression in computer programs. Copyright could protect
both as long as there was a modicum of creativity to support the claim of
copyright.

The Oracle decision has rekindled a decades-old debate, which many
thought had been settled in the late 1990s, about the proper scope of
copyright protection for computer programs and how courts should analyze
claims of software copyright infringement.30 The Supreme Court decision
not to review Oracle leaves the CAFC ruling intact for the time being.31

 25. Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 977, 998–1002 (N.D. Cal.
2012), rev’d, 750 F.3d 1339 (Fed. Cir. 2014).
 26. Oracle, 750 F.3d at 1355–58.
 27. See id. at 1366–68.
 28. See id. at 1359–62 (discussing the merger doctrine), 1364–68 (discussing § 102(b)).
 29. See id. at 1380–81.
 30. The Oracle decision has already spawned new rounds of software copyright
litigation. See, e.g., Cisco Sys., Inc. v. Arista Networks, Inc., No. 5:14-cv-05344 (N.D.
Cal. 2014); Synopsys, Inc. v. ATopTech, Inc., No. 3:13-cv-02965 (N.D. Cal. 2013). The
complaints in both cases include patent as well as copyright infringement claims. See
Complaint for Copyright and Patent Infringement, Cisco Sys., Inc. v. Arista Networks,
Inc., No. 14-5344, 2014 WL 6844640 (N.D. Cal. Dec. 5, 2014); Amended Complaint for
Copyright Infringement, Patent Infringement, Breach of Contract, and Breach of Implied
Covenant of Good Faith and Fair Dealing, Synopsys, Inc. v. ATopTech, Inc., No. 3:13-cv-
02965-MMC, 2013 WL 7117632 (N.D. Cal. Nov. 25, 2013). Appeals from the District
Court decisions in Arista and Synopsys will go to the CAFC because the plaintiffs in those
cases have learned a lesson from the Oracle case that tacking on a patent claim will avoid
going to the Ninth Circuit where compatibility and § 102(b) defenses would be more likely
to prevail.
 31. 750 F.3d 1339 (Fed. Cir. 2014), cert. denied, 135 S. Ct. 2887 (2015). The CAFC’s
ruling will not be binding on the Ninth Circuit or other courts. The Oracle case was
remanded for retrial of Google’s fair use defense, resulting in a jury verdict in favor of
Google and fair use. Oracle Am., Inc. v. Google Inc., No. C 10-03561 WHA, 2016 WL
3181206 (N.D. Cal. June 8, 2016), appeal docketed, Nos. 17-1118, -1202 (Fed. Cir. Nov.
14, 2016).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1223

This Article aims to provide guidance about how courts should assess
claims of copyright infringement in computer program cases. It assesses the
strengths and limitations of the various tests for infringement adopted in
software copyright cases and offers a refined test for infringement that takes
the soundest features from the existing tests and consolidates them into one
unified approach.

Part II reviews the Whelan and Altai decisions and explains why the
AFC test is more consistent with traditional principles of copyright law than
the Whelan is-there-any-other-way-to-do-it test. Altai recognized that
external factors, such as the need to be compatible with other programs,
sometimes constrain the design decisions of subsequent programmers, and
when this happens, those constraints limit the scope of copyright protection
in programs. While there is much in the decision to praise, Altai failed to
heed the statutory directive in § 102(b) that procedures, processes, systems,
and methods of operation should also be filtered out before making
judgments on copyright infringement claims in software cases.

Part III explains the important role that § 102(b) has played in various
computer program cases, including Borland. It then discusses the numerous
respects in which the CAFC in Oracle misinterpreted § 102(b). It considers
six types of cases in which courts have held that aspects of programs that
are necessary for achieving interoperability with other programs or
hardware are too functional to be protected by copyrights.

Part IV explains why the merger doctrine has an important role to play
in the assessment of infringement claims involving computer programs and
why the CAFC erred in its interpretation of this doctrine. Courts should
explicitly recognize a merger of function and expression doctrine in some
computer program cases. That doctrine would usefully complement an
analysis of elements that may be unprotectable under § 102(b).

Part V considers the roles that copyright and patent law should play in
protecting program innovations, with particular attention to how courts
should assess claims that copyright protection should be unavailable to
aspects of programs possibly eligible for patent protection. The CAFC in
Oracle conflated copyright and utility patent protections for software, as
though it was unnecessary to even try to distinguish program expression and
functionality.

Part VI offers a pragmatic approach to distinguishing between program
functionality and expression in copyright cases, as well as a refined version
of the Altai AFC test that is consistent with the traditional principles of
copyright law and the overwhelming majority of software copyright cases
(even if not consistent with the CAFC’s Oracle decision). Competition and
ongoing innovation will better thrive when the scope of copyright protection

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1224 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

is relatively thin, allowing programmers to reuse functional design elements
and know-how that will promote the progress of science and useful arts, as
the Constitution directs.32

II. THE ABSTRACTION-FILTRATION-COMPARISON TEST

The Second Circuit’s 1992 Altai decision was important for a number
of reasons. For one thing, Altai recognized that the essentially utilitarian
nature of computer programs meant that copyright law should be applied
carefully to ensure that courts were not extending protection to functional
aspects of programs, which should be free for all programmers to use
(unless patented).33 Second, Altai recognized that software developers are
often constrained in their design decisions by, among other things, the need
to be compatible with existing software or hardware, which should limit the
scope of copyright protection in programs.34 Third, the Second Circuit
indicated in Altai that SSO was not a fruitful concept to employ when
analyzing whether nonliteral elements of programs were within the scope
of copyright protection.35 Fourth, Altai rejected sweat-of-the-brow
arguments for giving software a broad scope of protection because such
arguments were inconsistent with Supreme Court precedent and
fundamental principles of copyright law.36 If software developers needed
more legal protection than copyright could provide, the Second Circuit
thought this was a matter for Congress.37

Fifth and most important for the purposes of this section, Altai provided
courts in subsequent cases with a more nuanced test for judging claims of
software copyright infringement than Whelan and other prior cases had
provided. The first step of Altai’s so-called “abstraction-filtration-
comparison” test was to create a hierarchy of abstractions for the program
alleged to be infringed, the second was to filter out unprotectable elements,
and the third was to compare the remaining expression in the plaintiff’s
program with the defendant’s program to determine whether the defendant
infringed copyright.38

In each respect, the Altai decision countered approaches that courts had
taken in earlier cases. Section A discusses the cases to which Altai was, in

 32. See U.S. CONST. art. I, § 8, cl. 8.
 33. See Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 703–05 (2d Cir. 1992).
 34. Id. at 707–10.
 35. Id. at 706.
 36. Id. at 711–12 (citing Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340,
349–50 (1991)).
 37. Id. at 712.
 38. See id at 706–11.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1225

a sense, responding. Section B provides some detail about the AFC test and
why the Second Circuit thought many elements of programs should be
filtered out before making final judgments about infringement. Section C
explains what Altai got right and which aspects of the AFC test are in need
of some refinement.

A. THE ROCKY ROAD TO ALTAI

In the early 1980s, U.S. appellate courts reviewed two software
copyright cases in which the defendants had made exact copies of computer
program object code.39 Both defendants argued that the exact copying of the
Apple II operating system (OS) programs was necessary to enable their
computers to be compatible with the Apple II so that programs written to
run on the Apple II could run on the defendants’ platforms as well.40 Apple
prevailed in both cases.

Of the two cases, the Third Circuit’s decision in Apple Computer, Inc.
v. Franklin Computer Corp. merits discussion because of its unnuanced
responses to the defendant’s merger and § 102(b) arguments.41 Franklin
contended that the ideas of the Apple II OS had merged with their
expression because the only way Franklin could make its computers
functionally compatible with the Apple II was by installing exact copies of
the Apple OS programs on its machines.42 The Third Circuit rejected this
argument, stating that achieving compatibility was “a commercial and
competitive objective which does not enter into the somewhat metaphysical
issue of whether particular ideas and expressions have merged.”43 Franklin
also contended that the Apple OS programs were unprotectable by
copyright law because § 102(b) excluded functional processes from the
scope of copyright protection.44 Section 102(b) provides that “[i]n no case
does copyright protection . . . extend to any idea, procedure, process,
system, method of operation, concept, principle or discovery, regardless of
the form in which it is . . . embodied in . . . [the] work.”45 But the court

 39. Apple Comput., Inc. v. Formula Int’l, Inc., 725 F.2d 521 (9th Cir. 1984); Apple
Comput., Inc. v. Franklin Comput. Corp., 714 F.2d 1240 (3d Cir. 1983).
 40. Formula’s compatibility claim was more indirect than Franklin’s, but Formula,
like Franklin, was selling clones of the Apple II computer, and Formula objected to the
issuance of an injunction because it would inhibit competitive entry into the computer
market. Formula, 725 F.2d at 522–26; Franklin, 714 F.2d at 1253.
 41. Franklin, 714 F.2d 1240.
 42. Id. at 1253.
 43. Id.
 44. Id. at 1250–52.
 45. 17 U.S.C. § 102(b).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1226 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

rejected Franklin’s argument because Congress had decided to treat
programs as literary works.46

The court in Franklin unquestionably reached the right result. If
Congress’ decision to extend copyright protection to computer programs
was to be respected, it had to mean that exact copying of object code would
get defendants in trouble, particularly where, as in Franklin, the copyist had
not even tried to reimplement the Apple II OS functionality in different
code.47

The most troubling aspect of the Franklin decision was its strident
rejection of compatibility as a possible justification for some copying from
an existing program. Although eventually repudiated in several subsequent
cases,48 this dictum was recently revived in the CAFC’s Oracle decision.49
Franklin also took an unduly narrow view of § 102(b). The Third Circuit
was right that § 102(b) should generally not be interpreted to allow the exact
copying of object code just because such code is a “process.”50 But the court
failed to acknowledge that § 102(b) excluded more than abstract ideas from
the scope of copyright protection.51 The statutory exclusion of methods and
processes embodied in programs had to be respected as well. Because of
this exclusion, the scope of copyright protection in computer programs
should be thinner than the scope of protection available to conventionally
expressive works, such as novels and plays.52

Although literal copying of program code, as in Franklin, presented an
easy question for courts to answer, a more difficult question has been
whether nonliteral elements of programs, such as SSO, qualify for copyright
protection. That question was first addressed at the appellate level by the
Third Circuit in Whelan Associates, Inc. v. Jaslow Dental Lab., Inc.53

 46. See Franklin, 714 F.2d at 1248–49, 1252–53.
 47. Id. at 1245.
 48. See infra text accompanying notes 259–264, 363.
 49. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1371 (Fed. Cir. 2014) (quoting
the Franklin dicta).
 50. Franklin, 714 F.2d at 1250–52. In rare cases, such as Lexmark, function and
expression in a program may merge. Lexmark Int’l, Inc. v. Static Control Components, 387
F.3d 522, 540-42 (6th Cir. 2004). See infra text accompanying notes 318–322 for a
discussion of function/expression merger.
 51. See 17 U.S.C. § 102(b) (“In no case does copyright protection . . . extend to any idea,
procedure, process, system, method of operation, concept, principle, or discovery”).
 52. Congress added § 102(b) to the 1976 Act in part to ensure that courts would not
give too broad an interpretation to software. See H.R. REP. NO. 94-1476 at 56–57 (1976),
as reprinted in 1976 U.S.C.C.A.N. 5659, 5670.
 53. 797 F.2d 1222 (3d Cir. 1986). A few District Court decisions prior to Whelan
treated structural elements of programs as protectable expression. See, e.g., SAS Inst., Inc.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1227

Jaslow had commissioned Whelan to develop a program to automate
common business processes of dental laboratories.54 The parties initially
intended to exploit the software as partners,55 but after a falling out, Jaslow
decided to develop a program to do the same functions that would run on
IBM-PCs.56 Although Jaslow’s and Whelan’s programs were written in
different programming languages and used different algorithms and data
structures, the appellate court was impressed by similarities in the overall
structures of the two programs,57 in their file structures,58 and in the way
five modules performed functions.59 Based on these similarities, the
appellate court upheld a ruling that Jaslow infringed Whelan’s copyright.60

Jaslow’s main defense was his contention that Congress had intended
for copyright law to protect programs only against exact code copying.61

v. S&H Comput. Sys., 605 F. Supp. 816 (M.D. Tenn. 1985). Whelan relied in part on the
SAS case. See 797 F.2d at 1239.
 54. Whelan Assoc., Inc. v. Jaslow Dental Lab., Inc., 609 F. Supp. 1307, 1309–10
(E.D. Pa. 1985). Jaslow had tried to develop this program on his own, but he lacked the
skills to complete it, which is why he hired Whelan. Id.
 55. Id. at 1312. Jaslow terminated this agreement and started his own firm to sell a
competing product. Id. at 1313–15.
 56. Whelan’s contract explicitly provided that she would own IP rights in the
Dentalab software. Id. at 1310. Despite this, Jaslow claimed to be the sole owner of the
program (or at least a co-author of it) and licensed that software to third parties. Id. at 1315–
17. The court held him as an infringer for the revenues he collected for selling Whelan’s
program to others. Id. at 1323.
 57. 797 F.2d at 1239, 1247–48. In addition to selling infringing copies of Whelan’s
program, Jaslow, with the help of a contract programmer, had developed a competing
program, which Whelan claimed infringed her copyright. 609 F. Supp. at 1314–15. This
was the program that Whelan alleged had non-literally infringed her copyright. He called
the new program “Dentlab,” which the court held was confusingly similar to Whelan’s
“Dentalab” trademark. Id. at 1324.
 58. Whelan, 797 F.2d at 1242–43.
 59. Id. at 1245–46. The District Court had a difficult time understanding the
technology at issue. Judge Vanartsdalen decided that Whelan’s expert was more credible
than Jaslow’s expert because the former had observed the program in operation whereas
the latter had only studied the source code for the two programs. Whelan, 609 F. Supp. at
1316. Vanartsdalen was also particularly impressed by the similarities in screen displays,
id. at 1322, even though Whelan’s claim of infringement was based on copying of structure
from the underlying text of the program, not on screen displays. The District Court noted
that Jaslow’s program was not a translation from one computer language to another. Id. at
1315. The appellate court, on the other hand, was more precise about the structural
similarities and recognized the risk of undue prejudice if courts used similarities in screen
displays as evidence of similarities in program text, given that independently written code
can produce the same results. 797 F.2d at 1244–45.
 60. Id. at 1240–42.
 61. Id. at 1235, 1241–42. See also Dennis S. Karjala, Copyright Protection of
Computer Documents, Reverse Engineering, and Professor Miller, 19 U. DAYTON L. REV.
975, 984–89 (1994) (arguing that copyright should protect only against slavish copying of

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1228 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

The Third Circuit rejected this argument, reasoning that because copyright
law had long protected structural elements of conventional literary works,
such as novels and plays,62 copyright should protect the SSO of programs
as well.63 SSO included, in its view, “the manner in which the program
operates, controls and regulates the computer in receiving, assembling,
calculating, retaining, correlating, and producing useful information.”64 Just
as with novels and plays, anyone was free to copy the ideas from existing
programs, but program SSO, Whelan announced, was protectable
expression as long as there was more than one way to structure a program
to achieve the program’s functions.65 Because Jaslow could have used
different SSO, his use of the same or similar ones as Whelan’s constituted
infringement.66

The Third Circuit acknowledged that software was a utilitarian work,67
but it made no effort to distinguish between nonliteral elements of programs
that should be regarded as protectable structures and those that might be
unprotectable utilitarian processes.68 Whelan’s test for infringement
effectively rendered all program structure as protectable subject matter
(unless there was truly no other way to structure the program). The Third
Circuit noted that program structure and logic were “among the more
significant costs in computer programming.”69 The court concluded that
without broad copyright protection for computer programs, there would be
too little legal protection to provide proper incentives to invest in
developing computer programs.70

code). Jaslow infringed when he sold Whelan’s program, see supra note 56, but in light of
later case developments, he may not have infringed as to the later-developed program. See
infra note 450.
 62. See, e.g., Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49 (2d Cir. 1936)
(finding infringement because of structural similarities between scenes in plaintiff’s play
and defendant’s movie).
 63. Whelan, 797 F.2d at 1233–34.
 64. Id. at 1239–40 (quoting Whelan, 609 F. Supp. at 1320). This would seem to extend
copyright protection to all program behavior, which is generally highly functional in
character.
 65. Id. at 1236; see also id. at 1224 n.1 (indicating that the opinion uses “‘structure,’
‘sequence,’ and ‘organization’ interchangeably when referring to computer programs”).
 66. Whelan, 797 F.2d at 1242–48.
 67. Id. at 1236.
 68. CONTU did not provide guidance on this score either. See supra text
accompanying note 8.
 69. Whelan, 797 F.2d at 1237.
 70. Id. The Second Circuit in Altai noted that Whelan had been decided prior to the
Supreme Court’s revocation of the sweat-of-the-brow doctrine in Feist Publ’ns, Inc. v.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1229

Whelan and its test for infringement were initially followed in some
cases,71 despite sharp criticisms in the law review literature for taking an
overly expansive view of the scope of protection for programs.72 The
Whelan test posited that only the general purpose or function of a program
was an unprotectable idea under § 102(b), and all program SSO, no matter
how abstract or standard it might be in the programming field, was
protectable expression unless there was truly no alternative way to
accomplish the function.73 The first appellate court to break with Whelan
was the Fifth Circuit Court of Appeals in Plains Cotton Cooperative Ass’n
v. Goodpasture Computer Service, Inc.74 The Fifth Circuit refused to follow
Whelan because many of the structural similarities between user interfaces
of the cotton trading programs at issue were “dictated by the externalities of
the cotton market” and to be expected of a marketable program in that
field.75

Although Whelan did not involve program SSO necessary for achieving
interoperability with other programs, coupled with Franklin’s rejection of
compatibility defenses, the court’s broad endorsement of SSO as
protectable expression put unlicensed developers who reimplemented the
interfaces of an existing program to make their own programs interoperable
at risk of infringement.76 Relying on the Whelan decision’s endorsement of
copyright protection for program SSO, Computer Associates (CA) brought
a lawsuit against Altai for nonliteral copyright infringement that came
before the Second Circuit in 1992.77 Altai defended by arguing that it was

Rural Tel. Serv. Co., 499 U.S. 340, 349–50 (1991). Comput. Assocs. Int’l, Inc. v. Altai,
Inc., 982 F.2d 693, 711–12 (2d Cir. 1992).
 71. See, e.g., Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127,
1133 (N.D. Cal. 1986).
 72. See Altai, 982 F.2d at 711–12 (citing five critics of the Whelan decision); Englund,
supra note 10, at 875–76 (noting that not just program ideas, but also program processes,
should be excluded from the scope of copyright protection). See also infra notes 82–85 and
accompanying text for a fuller account of Altai’s criticism of Whelan.
 73. Whelan, 797 F.2d at 1236.
 74. 807 F.2d 1256 (5th Cir. 1987).
 75. Id. at 1262.
 76. One post-Whelan District Court upheld a second-comer’s reuse of a first-comer’s
variation on an interface protocol that was necessary to achieve compatibility. See Secure
Servs., Inc. v. Time & Space Proc’g, 722 F. Supp. 1354 (E.D. Va. 1989) (finding no
infringement to re-implement digital handshake for secure fax machines to be sold to the
government because variations lacked sufficient originality). Whelan was not cited.
 77. See Reply Brief for Plaintiff-Appellant at 8–18, Comput. Assocs. Int’l, Inc. v.
Altai, Inc., 982 F.2d 693 (2d Cir. 1992) (No. 91-7893), 1991 WL 11010234 (relying
heavily on Whelan).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1230 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

necessary to use the same SSO in its program in order to be compatible with
third-party programs.78

B. THE ALTAI DECISION AND THE AFC TEST

Computer Associates Int’l, Inc. v. Altai, Inc. was the first appellate court
decision to consider a compatibility defense to a claim of nonliteral
copyright infringement.79 CA charged Altai with copyright infringement for
copying program SSO—overall structure, macros, lists of services, and
parameter lists (i.e., lists of information that needed to be sent and received
by subroutines of the affected programs)—from CA’s scheduling
program.80 Altai argued that it needed to use the same parameter lists and
macros because this SSO was necessary for its programs to be compatible
with the IBM computers on which both its own and CA’s scheduling
programs were designed to run; other similarities were, moreover, to be
expected in programs of that kind.81

Before setting forth its alternative analysis, the Second Circuit discussed
the Whelan decision at some length. The Altai court agreed with the Third
Circuit that nonliteral elements of programs could be protected by
copyright,82 but it did not find Whelan’s SSO concept helpful in
distinguishing between which nonliteral elements of programs were
protectable by copyright law and which were not. The court regarded the
SSO concept as “demonstrat[ing] a flawed understanding of a computer
program’s method of operation” and as resting on a “somewhat outdated
appreciation of computer science.”83 While it characterized Whelan as “the
most thoughtful” attempt to apply the idea/expression distinction to
computer programs, the court also noted the widespread criticism of the
decision as “conceptually overbroad.”84 The Whelan test for infringement
of program SSO was, moreover, “descriptively inadequate,” relying “too

 78. Brief of Defendant-Appellee at 10–13, Comput. Assoc. Int’l, Inc. v. Altai, Inc.,
982 F.2d 693 (2d Cir. 1992) (No. 91-7893), 1991 WL 11010233.
 79. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 775 F. Supp. 544 (E.D.N.Y. 1991), aff’d,
982 F.2d 693 (2d Cir. 1992).
 80. CA sued Altai for copyright infringement after learning that Altai’s program
contained code directly copied from its CA-Scheduler program by one of CA’s former
employees whom Altai had hired. Altai purged the tainted code from its program and
assigned a clean-room team of programmers to reimplement the compatibility components
in new non-infringing code. But CA argued that there were still substantial similarities in
SSO that Altai had copied from its program. Altai, 982 F.2d at 697–700.
 81. See id. at 714–15.
 82. Id. at 702.
 83. Id. at 706.
 84. Id. at 705.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1231

heavily on metaphysical distinctions” instead of on “practical
considerations.”85

The “essentially utilitarian nature of a computer program,” the court
said in Altai, makes distinguishing program ideas and expressions more
difficult because compared to aesthetic works, “computer programs hover
even more closely to the elusive boundary line described in § 102(b).”86 The
Second Circuit characterized the Supreme Court’s decision in Baker v.
Selden as the “doctrinal starting point” for analyzing the scope of copyright
in “utilitarian works” because that decision recognized that the copyright in
a work describing or illustrating a useful art did not extend to that art.87 The
Second Circuit quoted at length from Baker and its holding that Selden’s
bookkeeping system and the forms that illustrated its use were not
protectable by copyright law.88 The court perceived computer programs to
be “roughly analogous” to Selden’s book, and consistent with Baker, it
stated “those elements of a computer program that are necessarily incidental
to its function are similarly unprotectable.”89

To ensure that unprotectable elements of programs would not be
inadvertently swept into the infringement determination, the Second Circuit
thought it important to fashion a new test for software copyright
infringement that would filter those elements out. It announced a three-step
test to achieve this objective in cases involving nonliteral software
copyright infringement.90 The first step required constructing a hierarchy of
abstractions for the program alleged to be infringed. The second step
required filtering out the unprotectable elements of programs. The court
said filtration should exclude: aspects of programs that are dictated by
efficiency, design choices that are constrained by external factors, and
elements of programs that are in the public domain, such as commonplace
programming techniques, ideas, and know-how.91 The Altai test’s third step
called for comparing the “golden nugget[s]” of expression remaining after
filtration to determine if there was substantial similarity in the nonliteral
expression that the defendant had copied from the plaintiff’s program.92

Applying this test, the court in Altai was satisfied that some similarities
between CA’s and Altai’s programs were due to public domain elements,

 85. Id. at 705–06.
 86. Id. at 704.
 87. Id.
 88. Id. at 704–05 (quoting Baker v. Selden, 101 U.S. 99, 103 (1879)).
 89. Id.
 90. See id. at 706–11.
 91. Id. at 707–10.
 92. Id. at 710.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1232 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

some were at too high a level of generality, and others were “dictated by the
functional demands of the program.”93 The parameter list similarities, in
particular, were seen as necessary to develop a program that would be
compatible with the IBM systems.94

The Second Circuit recognized that applying the AFC test to software
might mean that copyright would “serve[] as a relatively weak barrier
against public access to the theoretical interstices” of program design, but
that “results from the hybrid nature of a computer program, which, while it
is literary expression, is also a highly functional, utilitarian component in
the larger process of computing.”95 The AFC test “not only comports with,
but advances the constitutional policies underlying the Copyright Act,” the
court wrote.96 CA’s economic arguments in favor of broad copyright
protection for program SSO were deemed inconsistent with Supreme Court
precedents.97 Adopting CA’s theory would, the court added, “have a
corrosive effect on certain fundamental tenets of copyright doctrine.”98
Copyright law, the Second Circuit recognized, should not be construed to
give utility patent-like protection to highly functional program SSO.99

C. A CLOSER LOOK AT ALTAI’S FILTRATION FACTORS

The Altai decision identified three categories of nonliteral elements of
computer programs that should be filtered out of consideration during
infringement analysis. The first was “elements dictated by efficiency.”100
Given that Altai did not raise an efficiency defense, the Second Circuit did
not need to discuss the exclusion of efficient design elements from the scope
of copyright. However, the court was influenced by the “successive
filtering” test for software copyright infringement proposed in the Nimmer
treatise, which identified efficient program designs as unprotectable
elements.101 The Second Circuit relied upon the merger doctrine to justify

 93. Id. at 714–15 (quoting Judge Pratt’s District Court opinion).
 94. Id.
 95. Id. at 712.
 96. Id. at 711.
 97. Id. at 711–12 (citing Feist Publ’ns., Inc. v. Rural Tel. Serv. Co., 499 U.S. 340,
349–50 (1991)) (rejecting “sweat of the brow” copyright claim in white pages listings of a
telephone directory).
 98. Id. at 712.
 99. Id.; see also infra Part V (discussing why copyrights should not be interpreted to
give patent-like protection to program innovations).
 100. Altai, 982 F.2d at 707–09. Efficiency as a constraint is discussed further infra text
accompanying notes 344–347.
 101. See Altai, 982 F.2d. at 707 (citing NIMMER ON COPYRIGHT, supra note 10, at 13.03
[F]). The heart of the Nimmer successive filtering test became known as the AFC test after

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1233

the filtration of efficient designs insofar as those nonliteral elements of a
program were “dictated by considerations of efficiency, so as to be
necessarily incidental to that idea.”102 By invoking the merger doctrine to
exclude efficient elements of programs, the Second Circuit remained
faithful to Baker v. Selden and the Supreme Court’s holding that functional
design elements in copyrighted works are not within the scope of copyright
protection, although they may be eligible for patenting.

Altai’s exclusion of efficient design elements was an important
pronouncement because cases such as Whelan had not considered efficiency
as a limiting principle in software cases. Under the Third Circuit’s
conception of software copyright protection in Whelan, the question was
whether there was any other way to carry out a function, and if there was,
then the second comer had to do it another way and not copy the plaintiff’s
SSO.103 The Second Circuit, however, noted that “[i]n the context of
computer program design, the concept of efficiency is akin to deriving the
most concise logical proof or formulating the most succinct mathematical
computation.”104 There might well be, ex ante, myriad ways to carry out
some functions in a program, but “efficiency concerns may so narrow the
practical range of choice as to make only one or two forms of expression
workable options.”105 The court was reluctant to force programmers to use
inefficient (and hence inferior) program designs when efficient ones were
available.106

the Altai decision. The court also cited to Professor Menell, supra note 10, at 1052, when
discussing efficiency as a limiting principle on copyright.
 102. Altai, 982 F.2d at 707. The “necessary incidents” language, of course, traces back
to Baker. See 101 U.S. 99, 103 (1879).
 103. Whelan Associates Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1236 (3d Cir.
1986). The Third Circuit noted that efficiency is a “prime concern” of programmers and
the more efficient a program was, the more valuable it would be. Id. at 1230. But the court
did not perceive efficiency as a design constraint. See also Lotus Dev. Corp. v. Paperback
Int’l, Inc., 740 F. Supp. 37, 57 (D. Mass. 1990) (rejecting arguments that the functionality
of an interface design should limit the scope of copyright protection).
 104. Altai, 982 F.2d at 708. Computer science books teach programmers about the
relative efficiencies of different algorithms and other program design elements for
particular types of computations. See generally DONALD KNUTH, THE ART OF COMPUTER
PROGRAMMING: FUNDAMENTAL ALGORITHMS (3d ed. 1997).
 105. Altai, 982 F.2d at 708.
 106. See id. The efficiency exclusion, endorsed in Altai, has been influential in
subsequent cases. See, e.g., Bay State Tech., Inc. v. Bentley Sys., Inc., 946 F. Supp. 1079,
1088 (D. Mass. 1996); see also Zalewski v. Cicero Builder Dev. Inc., 754 F.3d 95, 105 (2d
Cir. 2014) (efficiency considerations limit scope of copyright in architectural works).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1234 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

The second filtration category concerned those “elements dictated by
external factors.”107 Relying heavily on the Nimmer treatise, Altai identified
five types of “extrinsic considerations” that may “circumscribe[]” a
programmer’s “freedom of design choice.”108 They were:

(1) the mechanical specifications of the computer on which a
particular program is intended to run; (2) compatibility
requirements of other programs with which a program is intended
to run; (3) computer manufacturers’ design standards; (4)
demands of the industry being serviced; and (5) widely accepted
programming practices within the computer industry.109

Although “dictated by” is the language of merger, as Altai recognized
in its discussion of efficiency, the Second Circuit pointed to the scenes a
faire doctrine as its main doctrinal justification for the “external factors”
category.110 This doctrine excludes from the scope of copyright protection
elements that are inevitable or commonly present in works of that kind.111
Scenes a faire had, the court noted, been employed to limit copyright
liability in some prior computer software cases.112 When applying the AFC
test to the facts in Altai, the Second Circuit viewed similarities in the
organizational charts of the two programs as scenes a faire elements because
they “follow[ed] naturally from the work’s theme rather than from the
author’s creativity.”113

It does seem appropriate to characterize widely accepted programming
practices or similarities driven by the demands of the industry as falling
within the scenes a faire doctrine.114 The merger doctrine, however, is more

 107. Altai, 982 F.2d at 709–10.
 108. Id. at 709.
 109. Id. at 709–10 (citing NIMMER ON COPYRIGHT, supra note 10, at 13-66-71).
 110. Altai, 982 F.2d at 709–10. The scenes a faire doctrine is distinct from the merger
doctrine because the latter focuses constraints on the range of expressive choices available
to authors. See infra Part IV for an extended discussion of the merger doctrine.
 111. Altai, 982 F.2d at 709 (citing Hoehling v. Universal City Studios, Inc., 618 F.2d
972, 979 (2d Cir. 1980)) (similarities between book and movie about the Nazi era in
Germany were unprotectable scenes a faire elements).
 112. Id. at 709–10 (citing to four prior cases, including Data East USA, Inc. v. Epyx,
Inc., 862 F.2d 204 (9th Cir. 1998)) (similarities in karate videogames were unprotectable
as to scenes a faire elements).
 113. Id. at 715.
 114. See id. at 710. The Second Circuit pointed to Plains Cotton Coop. Ass’n v.
Goodpasture Comput. Serv., Inc., 807 F.2d 1256, 1262 (5th Cir. 1987), which had ruled
that similarities in programs were due to demands of the cotton market, to illustrate the
point. The Fifth Circuit in Plains Cotton, however, did not mention the scenes a faire
doctrine in its decision; instead it said that similarities were “dictated by” demands of the
industry. Id. “Dictated by” is the language of merger.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1235

pertinent to constraints imposed by mechanical specifications of the
computer on which a program is run, computer manufacturer design
standards, and requirements for achieving compatibility with other
programs because these are “necessary incidents” constraints.115 In
applying the AFC test, the Second Circuit quoted the District Court as
having found that some similarities between CA’s and Altai’s programs
were “‘dictated by the functional demands of the program.’”116 Dictated by,
as noted above, is the language of merger, not of scenes a faire.

The third category of unprotectables consisted of “elements taken from
the public domain.”117 This might have seemed unnecessary to say, but
perhaps the Second Circuit wanted to make sure that courts would be on the
lookout for public domain elements. The Whelan decision had been so
sweeping in its conception of the scope of copyright in software—every bit
of program SSO was said to be protectable expression unless there were no
alternative choices possible118—that the Altai court’s reminder that
programs, like other works, contain public domain elements was useful. The
public domain category of filtration has been used in some post-Altai
cases,119 but the Second Circuit did not spell out what kinds of public
domain elements it thought should be filtered out.120

What is strangely missing from Altai’s list of unprotectable elements in
computer programs that must be filtered out before deciding whether

 115. Some subsequent cases have treated compatibility components of programs as
unprotectable under the merger doctrine. See, e.g., Lexmark Int’l, Inc. v. Static Control
Components, 387 F.3d 522, 540–42 (6th Cir. 2004); see also Bateman v. Mnemonics Inc.,
79 F.3d 1532, 1544–48 (11th Cir. 1996) (reversing lower court for failure to give proper
jury instruction about the possible need to use the same interface code to attain
compatibility).
 116. Altai, 982 F.2d at 714 (quoting Comput. Assocs. Int’l, Inc. v. Altai, Inc.,775 F.
Supp. 544, 562 (E.D.N.Y. 1991)).
 117. Id. at 710.
 118. Whelan Associates Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1236 (3d Cir.
1986).
 119. See, e.g., Paycom Payroll LLC v. Richison, 758 F.3d 1198, 1205 (10th Cir. 2014)
(directing filtration of “ideas, processes, facts, public domain information, merger material,
scenes a faire material, and other unprotected elements suggested by the particular facts of
the program under examination”); Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823,
842–43 (10th Cir. 1993) (defendant could lawfully reuse the plaintiff’s mathematical
constants because they were in the public domain as facts).
 120. In support of the public domain category, Altai cited Brown Bag Software v.
Symantec Software, 960 F.2d 1465, 1473 (9th Cir. 1992) (“Plaintiffs may not claim
copyright protection of an expression that is, if not standard, then commonplace in the
computer software industry.”). This quote would have more suitably illustrated a type 5
external factors excludable under the scenes a faire doctrine in the Altai conception of the
filtration categories.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1236 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

infringement has occurred are the categories that § 102(b) renders
unprotectable by copyright law: procedures, processes, systems, and
methods of operation. The Second Circuit quoted that provision once and
cited it in three places.121 But curiously, it did not consider what kinds of
procedures or methods should be unprotectable aspects of programs, let
alone direct the filtration of these § 102(b) elements. Later cases have
identified algorithms and functional behavior as among the structural
elements of programs that must be excluded from protection under
§ 102(b).122

The Second Circuit may have thought the exclusion of procedures, etc.,
was unnecessary because it regarded the unprotectable elements it did
identify as proxies for the procedure, process, system, and method of
operation exclusions that § 102(b) says are unprotectable. But merger,
scenes a faire, and public domain are different types of limiting principles
than processes and methods of operation. If the Second Circuit regarded
efficiency, external factors, and public domain elements as proxies for the
§ 102(b) excludables, it should have explained why the words of the statute
should be ignored and why these proxies were appropriate.

It is also possible that the Second Circuit did not perceive a need to filter
out these § 102(b) excludables because the Altai case arguably did not
involve any claim about processes or methods of operation. However, other
cases have identified the functional requirements for achieving
interoperability with other programs as unprotectable procedures under
§ 102(b).123 So this does not explain the omission.

A third possibility—and probably the true explanation—is that the
Second Circuit was relying on the Nimmer treatise’s successive filtering
method for judging software copyright infringement. Because that treatise
did not identify procedures, processes, systems, or methods of operation as
excludable elements in computer programs, neither did the Second Circuit.
The Nimmer treatise has systematically deflected attention away from the
wider meaning of § 102(b), treating it as merely a restatement of the
idea/expression distinction.124 Under the influence of the Nimmer treatise,

 121. Altai, 782 F.2d at 703–04.
 122. See infra notes 135–42 and accompanying text.
 123. See, e.g., Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522, 1526 (9th Cir.
1992).
 124. See Pamela Samuelson, Why Copyright Excludes Systems and Processes From
the Scope of Its Protection, 85 TEX. L. REV. 1921, 1953–61 (2007). The Nimmer treatise
has ignored the myriad cases that, under the influence of Baker v. Selden, have held such
things as procedures, processes, systems, and methods of operation are unprotectable
elements of copyrighted works. Id. at 1936–44 (discussing the cases). Congress intended

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1237

courts have sometimes been reluctant to pay attention and give content to
these exclusions, even though these elements have a wider range of possible
applications for computer programs than for any other type of copyrighted
work.125 Procedures, processes, systems, and methods of operation are, after
all, functional design elements of the “essentially utilitarian nature of
computer program[s].”126

III. CONCEPTUALIZING THE PROPER ROLE OF § 102(b) IN
COMPUTER PROGRAM COPYRIGHT CASES

Because computer programs embody many procedures, processes,
systems and methods of operation that lie beyond the scope of copyright, it
would be logical for § 102(b) to have a significant, and perhaps even a
central, role in the analysis of claims of software copyright infringement.
One way to accomplish this objective would be to adapt the Altai AFC test,
as some courts have already done, by adding a fourth category of program
design elements derived from § 102(b) that should be filtered out before
proceeding with the final stage of infringement analysis.127 Another way
would be, in appropriate cases, to consider and apply the functional design
element exclusions in § 102(b) without tying them to the Altai framework,
which other courts have also already done.128

Section A discusses five propositions about § 102(b) that should be
uncontroversial and shows that courts in recent years have been more
receptive to employing § 102(b) as a limiting principle of software
copyright law. Sections B and C review the Lotus v. Borland and Oracle v.
Google cases, and explain why the application of § 102(b) in those cases
has generated some controversy. It is unfortunate that the Supreme Court
split 4-4 in Borland in 1995 and that twenty years later, it declined to hear
Google’s appeal; the split in the circuits as to the proper interpretation of
§ 102(b) is unlikely to be resolved any time soon. Section D explains why

to codify these common law exclusions from the scope of copyright by including § 102(b)
in the statute Id. at 1944–52 (discussing the legislative history of § 102(b)); see also Ann
Bartow, The Hegemony of the Copyright Treatise, 73 U. CINN. L. REV. 581 (2004)
(criticizing courts for relying heavily on copyright treatises, including Nimmer’s, in
interpreting copyright law).
 125. The Franklin and Whelan decisions are exemplary of this trend. See Apple
Comput., Inc. v. Franklin Comput. Corp., 714 F.2d 1240, 1250–52 (3d Cir. 1983); Whelan
Associates Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1234–36 (3d Cir. 1986).
 126. Altai, 982 F.2d at 704.
 127. See, e.g., Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823, 836–37 (10th Cir.
1993); see also infra text accompanying note 453.
 128. See, e.g., Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815–16 (1st Cir.
1995), aff’d by an equally divided Court, 516 U.S. 233 (1996).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1238 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

the Federal Circuit’s interpretation of § 102(b) compatibility defenses in
Oracle should be repudiated in subsequent software copyright cases.

A. FIVE UNCONTROVERSIAL PROPOSITIONS ABOUT § 102(b)

This Section articulates five propositions about § 102(b) that should be
uncontroversial. First, § 102(b) should not be interpreted in a manner that
would deprive programs of any copyright protection. Second, the
procedure, process, system, and method of operation exclusions in § 102(b)
are meaningful limits on the scope of copyright protection available to
programs. Third, one function of the § 102(b) exclusion of processes and
methods from the scope of copyright is to maintain boundaries between the
copyright and patent regimes. Fourth, the utilitarian nature of programs
differentiates them from conventional literary works because they contain
functional design elements such as processes that are excluded under
§ 102(b). Fifth, “SSO” is not a useful way to distinguish between those
nonliteral elements of programs that are unprotectable under § 102(b) and
those that constitute protectable expressions.

1. Section 102(b) Does Not Exclude Program Code from
Protection

The least controversial proposition about § 102(b) in relation to
computer programs is that Congress could not possibly have intended courts
to give a completely literal interpretation to § 102(b) because this would
render programs ineligible for copyright protection. Object code is
unquestionably a functional process. Therefore, the Third Circuit in
Franklin correctly rejected Franklin’s § 102(b) defense: Franklin copied the
Apple OS programs, bit for bit, and did not even try to reimplement the
functionality of the Apple programs in independently written code.129
Furthermore, while object code is the most functional embodiment of
program processes, because source code forms of programs function as
detailed statements and instructions for carrying out certain tasks, they are
unquestionably “procedures” within the normal meaning of that word. Yet,
to respect Congress’ decision to extend copyright protection to computer
programs, original program code, whether in source or object code form,
should generally be protectable by copyright law.130

 129. See supra note 47 and accompanying text.
 130. Occasionally, a program may either have insufficient originality to support a
copyright or be rendered unprotectable because function and expression have merged. See,
e.g., Lexmark Int’l, Inc. v. Static Control Components, 387 F.3d 522, 540–42 (6th Cir.
2004) (questioning the originality of a program embedded in a printer cartridge, but also
applying the merger doctrine to it).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1239

2. The Procedure, Process, System and Method of Operation
Exclusions of § 102(b) Must Mean Something

A second uncontroversial proposition is that the words of exclusion
from the scope of copyright protection for “procedure[s], process[es],
system[s], [and] method[s] of operation” in § 102(b) must mean
something.131 As a matter of logic, they cannot be synonymous with the
“idea” exclusion because “idea” is but one of eight categories of excludable
elements listed in § 102(b). One term cannot subsume the other seven.
Giving meaning to each of the statutory exclusions is consistent with
conventional canons of statutory construction.132 When a statute
specifically identifies several categories of unprotectable elements and says
that “[i]n no case” should any of them be within the scope of copyright
protection,133 courts should not read all but one of the terms out of the
statute, as the appellate courts did in Whelan and Oracle.

That these functional design elements excluded by § 102(b) should be
given close attention in software copyright infringement cases is also
evident from the legislative history of the 1976 Act. Both the House and
Senate Reports explained why § 102(b) was put in the statute:

Some concern has been expressed lest copyright in computer
programs should extend protection to the methodology or
processes adopted by the programmer, rather than merely to the
“writing” expressing his ideas. Section 102(b) is intended, among
other things, to make clear that the expression adopted by the
programmer is the copyrightable element in a computer program,
and that the actual processes or methods embodied in the program
are not within the scope of the copyright law.134

Courts in software copyright cases have identified several types of
nonliteral elements of programs as unprotectable procedures, processes,
systems, or methods of operation under § 102(b). Among the elements that

 131. 17 U.S.C. § 102(b).
 132. See Montclair v. Ramsdell, 107 U.S. 147, 152 (1883) (“It is the duty of the court
to give effect, if possible, to every clause and word of a statute, avoiding, if it may be, any
construction which implies that the legislature was ignorant of the meaning of the language
it employed.”); LARRY M. EIG, CONG. RESEARCH SERV., 97-589, STATUTORY
INTERPRETATION: GENERAL PRINCIPLES AND RECENT TRENDS 13 (2011) (“The modern
variant [of this principle] is that statutes should be construed ‘so as to avoid rendering
superfluous’ any statutory language” (quoting Hibbs v. Winn, 542 U.S. 88, 101
(2004))).
 133. 17 U.S.C. § 102(b).
 134. H.R. REP. NO. 94-1476, at 57 (1976); S. REP. NO. 94-473, at 54 (1975) (emphasis
added).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1240 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

courts have filtered out are algorithms,135 mathematical constants,136 rules
editing methods,137 methods of calculation,138 command structures,139 data
structures,140 interfaces necessary to interoperability,141 and functional
program behavior.142 Also noteworthy is the Copyright Office’s articulation
of functional elements of computer programs that the Office regards as
unprotectable by copyright law.143

The § 102(b) exclusions apply, of course, to all types of copyrighted
works, not just to computer programs. Procedures, processes, systems and
methods of operation have, in fact, been excluded from the scope of
copyright protection both before and after § 102(b) was added to the statute.
Consider, for example, Brief English Systems v. Owen which illustrates the
system exclusion.144 The Second Circuit decided that Owen was free to
write his own book on the shorthand system that the plaintiff had devised
because that system was ineligible for copyright protection.145 Taylor
Instrument Cos. v. Fawley-Brost Co. illustrates the method of operation

 135. See, e.g., Torah Soft Ltd. v. Drosnin, 136 F. Supp. 2d 276, 291 (S.D.N.Y. 2001).
 136. See, e.g., Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823, 842–43 (10th Cir.
1993). Gates Rubber directs use of a “process/expression” distinction in computer program
cases. Id.
 137. See, e.g., Ilog v. Bell Logic, LLC, 181 F. Supp. 2d 3, 14 (D. Mass. 2002).
 138. See, e.g., Harbor Software v. Applied Sys., Inc., 925 F. Supp. 1042, 1052
(S.D.N.Y. 1996).
 139. See, e.g., Mitek Holdings, Inc. v. Arce Eng’g Co., 89 F.3d 1548, 1557 (11th Cir.
1996).
 140. See, e.g., Baystate Techs., Inc. v. Bentley Systems, Inc., 946 F. Supp. 1079, 1088–
89 (D. Mass. 1996).
 141. See, e.g., Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522 (9th Cir. 1992).
 142. See, e.g., O.P. Solutions v. Intell. Prop. Network Ltd., No. 96 Civ. 7952 (LAP),
1999 WL 47191, at *16–20 (S.D.N.Y. Feb. 2, 1999).
 143. Compendium of U.S. Copyright Practices (3d ed. 2015) [hereinafter
Compendium], § 721.7 (“[T]he Office will not register the functional aspects of a computer
program, such as the program’s algorithm, formatting, functions, logics, system design,
and the like.”); see also id. at § 721.9(J) (indicating that registration will not be accepted if
the program author claims copyright in an algorithm, computation, data, formatting,
formulas, interfaces, language, layout, logic, menu screens, models, organization,
protocols, and system design, among other categories of unprotectable elements).
 144. 48 F.2d 555 (2d Cir. 1931).
 145. Id. at 556 (“There is no literary merit in a mere system of condensing written
words into less than the number of letters usually used to spell them out. Copyrightable
material is found, if at all, in the explanation of how to do it.”). Numbering systems for
hardware parts are similarly unprotectable by copyright law. See, e.g., ATC Distrib. Group,
Inc. v. Whatever It Takes Transmission & Parts, Inc., 402 F.3d 700 (6th Cir. 2005);
Southco, Inc. v. Kanebridge Corp., 390 F.3d 276 (3d Cir. 2004).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1241

exclusion.146 The Seventh Circuit rejected Taylor’s claim of copyright in
charts designed for use as part of a method of operating a temperature
recording machine.147 Publications Int’l Ltd. v. Meredith Corp. illustrates
the exclusion of procedures from the scope of copyright.148 The Seventh
Circuit held that individual recipes were unprotectable procedures under
§ 102(b), and others could freely copy them.149 Bikram’s Yoga College of
India, L.P. v. Evolation Yoga, LLC, illustrates the process exclusion.150 The
Ninth Circuit held that the series of yoga poses and breathing exercises that
Bikram Choudhury had developed were unprotectable processes under
§ 102(b) because of their functional character in helping to attaining
psychological and spiritual well-being.151

3. The Process and System Exclusions of § 102(b) Are Partly
Aimed at Maintaining Boundaries between Copyright and
Patent Laws

A third proposition about § 102(b) that should be uncontroversial is that
procedures, processes, systems, and methods of operation are excluded
from the scope of copyright protection in part to maintain a balance between
the role of copyright in protecting authorial expression and the role of patent
law in protecting inventions in the useful arts.152 Patented processes,
systems and methods of operation are often described in documents or

 146. 139 F.2d 98 (7th Cir. 1943); see also Brown Instrument Co. v. Warner, 161 F.2d
910, 911 (D.C. Cir. 1947) (upholding the Copyright Office’s refusal to register charts for
recording data).
 147. Taylor Instrument, 139 F.2d at 100–01; see also Coates-Freeman Assocs., Inc. v.
Polaroid Corp.792 F. Supp. 879, 884–85 (D. Mass. 1992) (problem-solving method
unprotectable by copyright law).
 148. 88 F.3d 473 (7th Cir. 1996).
 149. Id. at 480–81.
 150. 803 F.3d 1032 (9th Cir. 2015); see also Palmer v. Braun, 287 F.3d 1325, 1333–
34 (11th Cir. 2002) (citing to § 102(b) and affirming denial of a preliminary injunction
because similarities between Palmer’s and Braun’s courses and course materials were
largely due to the fact that they were teaching the same processes for raising human
consciousness).
 151. Bikram’s Yoga, 803 F.3d at 1039–40.
 152. See, e.g., Incredible Techs., Inc. v. Virtual Techs., Inc., 284 F. Supp. 2d 1069,
1078 (N.D. Ill. 2003), aff’d, 400 F.3d 1007 (7th Cir. 2015) (control panel features of
videogame were “potentially patentable-but not copyrightable”); Bateman v. Mnemonics,
Inc., 79 F.3d 1532, 1541, 1546 (11th Cir. 1996); Gates Rubber Co. v. Bando Chem. Indus.,
9 F.3d 823, 837 (10th Cir. 1993) (recognizing that some program processes may be
patentable). Processes are one of four categories of statutory subject matters eligible for
patent. See 35 U.S.C. § 101. Claims for patentable processes are often stated as methods
for carrying out certain operations. Patents for machines are typically stated as systems to
perform certain functions.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1242 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

illustrated in drawings. But “the principle is the same in all,” as the Supreme
Court said in Baker v. Selden more than a hundred twenty years ago:153 “The
description of the [useful] art in a book, though entitled to the benefit of
copyright, lays no foundation for an exclusive claim to the art itself
[That] can only be secured, if it can be secured at all, by letters-patent.”154
It would be “a surprise and fraud on the public,” the Supreme Court wrote,
if Selden could get through the copyright in his book a longer duration of
exclusive rights than if he had been able to get the patent he sought (which
he apparently failed to obtain).155

In Taylor Instrument, the Seventh Circuit invoked Baker in deciding
that Taylor’s charts for recording temperatures over time were not proper
subject matter for copyright protection.156 Although Taylor had obtained
registration certificates from the Copyright Office, the charts were
unprotectable by copyright law because they were indispensable parts of
Taylor’s recording machines.157 Fawley-Brost, the alleged infringer, was
entitled to provide a competitive alternative to those customers who owned
Taylor’s temperature recording machines and wanted cheaper charts that
would interoperate with the Taylor machines. The Seventh Circuit
observed:

While it may be difficult to determine in which field [of
intellectual property] protection must be sought, it is plain, so we
think, that it must be in one [copyright] or the other [patent]; it
cannot be found in both. In other words, there is no overlapping
territory, even though the line of separation may in some instances
be difficult of exact ascertainment.158

 153. Baker v. Selden, 101 U.S. 99 (1879).
 154. Id. at 105; see also Bikram’s Yoga, 803 F.3d at 1039–40 (ruling yoga healing
methodology is uncopyrightable, but stating that if it is “entitled to protection at all, that
protection is more properly sought through the patent process”).
 155. Id.; see Pamela Samuelson, Baker v. Selden: Sharpening the Distinction Between
Authorship and Invention, in INTELLECTUAL PROPERTY STORIES 160–61 (Rochelle C.
Dreyfuss & Jane C. Ginsburg eds., 2005) (noting that the preface to Selden’s book referred
to his patent application). Had the Court accepted Selden’s claim of copyright protection
in the bookkeeping system, he could have had exclusive rights in it for up to forty-two
years instead of the much shorter duration available had a patent issued for the system.
 156. 139 F.2d 98, 99–100 (7th Cir. 1943).
 157. Id. at 100.
 158. Id. at 99; see also Brown Instrument Co. v. Warner, 161 F.2d 910, 911 (D.C. Cir.
1947) (only patent, not copyright, protection was available to charts as parts of recording
machines). Note that Taylor Instrument and Brown Instrument are pre-software
interoperability cases.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1243

Similar considerations underlay the Ninth Circuit decision to reject
Sega’s infringement claim in Sega Enters. Ltd. v. Accolade, Inc.159 The
infringement suit commenced after Accolade reverse engineered Sega
programs to get access to information about the functional requirements for
achieving interoperability with Sega’s Genesis platform. Sega sued to stop
Accolade, arguing that the copies made in the course of reverse engineering
were infringements.160 The Ninth Circuit stated that “[i]f disassembly of
copyrighted object code is per se an unfair use, the owner of the copyright
gains a de facto monopoly over the functional aspects of his work—aspects
that were expressly denied copyright protection by Congress” under
§ 102(b).161 The court characterized the Sega interface as an unprotectable
procedure under § 102(b), saying that to get an exclusive right in that
interface, Sega needed to get a patent.162 This ruling allowed Accolade (and
other independent software developers) to create new non-infringing
programs that could run on the popular Genesis platform and maintained
the proper boundary lines between patent and copyright protections for
computer programs.

4. Because of § 102(b) Exclusions, the Scope of Copyright in
Programs Is Thinner than the Scope of Copyright in
Conventional Literary Works

A fourth proposition concerning § 102(b) that should be uncontroversial
is that the scope of copyright protection in computer programs is generally
much thinner than the scope of copyright in conventional literary works
(e.g., novels and poetry) because programs embody many functional design
elements that lie outside the scope of copyright protection under § 102(b).163
Courts have recognized that it is necessary to filter out procedures,
processes, systems, and methods of operation before ruling on software
copyright infringement claims.164 Conventional literary works, by contrast,
are typically highly expressive and non-functional, which is why courts

 159. See 977 F.2d 1510, 1524–27 (9th Cir. 1992) (noting that the functionality of
programs limits scope of copyright under § 102(b) and emphasizing that copyright should
not be construed to give programmers patent-like protection for elements excluded from
copyright under § 102(b)).
 160. Id. at 1516–17. Sega did not claim that Accolade infringed because it copied the
SSO of the Genesis interface.
 161. Id. at 1526.
 162. Id. at 1522, 1526.
 163. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992).
 164. See, e.g., Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823, 842–46 (10th Cir.
1993) (applying the abstraction-filtration-comparison test to the computer program).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1244 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

mainly concentrate on filtration of ideas, facts, and scenes a faire elements
in assessing infringement claims.165

5. SSO Obscures the Distinction between Nonliteral Elements of
Programs That Are Protectable by Copyright and Those That
Are Unprotectable Under § 102(b)

A fifth proposition that should be uncontroversial is that “SSO” is not a
useful way of conceptualizing which nonliteral elements of computer
programs are copyright-protectable expressions that cannot be reused
without infringing.166 Although courts have sometimes based infringement
findings on copying of the detailed structure of novels or plays,167 SSO was
not a term of art in the copyright field prior to the Whelan decision. Nor is
SSO a term of art in the computing field, as the Second Circuit observed in
Altai.168 As applied to programs, SSO obscures the reality that many aspects
of program structure and organization are procedures, processes, systems,
and methods of operation that § 102(b) excludes from copyright’s
protection.169 The term fails to provide a workable framework within which
courts can separate out nonliteral program expression from nonliteral
functional elements excluded under § 102(b). As the District Court in
Oracle observed, there has been a trend away from use of SSO in the post-
Altai software copyright case law, which has been “driven by fidelity to
Section 102(b)” to avoid the “danger” of overprotection of programs by
copyright law.170

 165. This explains why Judge Hand’s patterns-of-abstraction test for infringement,
which has long been applied to conventional literary and dramatic works, does not mention
processes or systems. See Nichols v. Universal Pictures, 45 F.2d 119, 121 (2d Cir. 1930),
cert. denied, 282 U.S. 902 (1931).
 166. See Altai, 982 F.2d at 702–06 (questioning the Whelan decision’s use of SSO);
Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 996 (N.D. Cal. 2012), rev’d, 750
F.3d 1339 (Fed. Cir. 2014) (pointing out that SSO terminology had not been used in the
software copyright case law since 1989); see also Weinreb, supra note 10, at 1170 (critical
of SSO formulation for software).
 167. See, e.g., Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49 (2d Cir. 1936).
 168. Altai, 982 F.2d at 706 (noting that SSO reflects an inaccurate understanding of
computer science).
 169. Plaintiffs in software copyright cases sometimes rely on the literary work
metaphor to deflect attention from the functionality of software. See, e.g., Opening Brief
and Addendum of Plaintiff Appellant, Oracle of Am. v. Google Inc., Court of Appeals for
the Federal Circuit, Case No. 13-1021, at 1–2 (likening the Android software to a knockoff
of a Harry Potter novel).
 170. Oracle, 872 F. Supp. 2d at 996.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1245

6. Summary

These five propositions are grounded in a straightforward reading of the
copyright statute and long-standing policy considerations that explain why
copyright protection is “thinner” for utilitarian works than for conventional
works of art and literature. Ongoing progress in the computing field requires
a realm of freedom to reuse functional design elements of programs.171
Courts and commentators who believe that § 102(b) merely restates the
idea/expression distinction should reconsider their conceptions of § 102(b).

But even accepting these propositions, the question remains whether the
command structures in the Borland and Oracle cases should have been
deemed unprotectable systems or methods of operation under § 102(b). To
that question, we now turn.

B. LOTUS V. BORLAND

Lotus v. Borland is the best known of the cases addressing whether a
command structure of a computer program user interface (UI) is protectable
by copyright law.172 Lotus was not, however, the first software developer to
sue a competitor for copyright infringement because the defendant adopted
the same set of commands, organized in the same way, as the plaintiffs’
program in order to carry out the same set of program functions.173

Courts in the early cases typically found infringement because they
conceived of the plaintiffs’ command structures as compilations of words
whose selection and arrangement was original enough to warrant copyright
protection, even if each command word on its own (e.g., copy or paste) was
unprotectable.174 These cases often relied upon Whelan, which considered

 171. See, e.g., Altai, 982 F.2d at 707–12 (emphasizing various elements of programs
that are unprotectable by copyright law because of the need of programmers to reuse them
and quoting commentary expressing concern that Whelan would enable programmers to
lock-up basic programming techniques and give first comers quasi-monopoly power).
 172. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807 (1st Cir. 1995).
 173. After Whelan, several lawsuits were brought against makers of “clone” or “work-
alike” programs that used the same or substantially similar commands as the industry
leader. See, e.g., Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37 (D. Mass.
1990); Digital Commc’n Assoc., Inc. v. Softklone Distrib. Corp., 659 F. Supp. 449 (N.D.
Ga. 1987); Broderbund Software, Inc. v. Unison World, 648 F. Supp. 1127 (N.D. Cal.
1986). These were sometimes known as “look and feel” cases because of similarities in the
way the programs looked and the way they operated in the same or substantially similar
ways. See, e.g., Pamela Samuelson, Why the Look and Feel of Software User Interfaces
Should Not Be Protected by Copyright Law, 32 COMM. ACM 563 (May 1989). Whelan
expressed receptivity to copyright protection for program “look and feel.” Whelan Assoc.
Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1231, 1245–47 (3d Cir. 1986).
 174. See, e.g., Softklone, 659 F. Supp. at 452–59.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1246 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

all structural elements of programs (e.g., UI command hierarchies) as
protectable expression as long as there was more than one way to structure
those elements.175

Borland unquestionably copied the command hierarchy of Lotus 1-2-3
in its Quattro Pro (QP) program.176 The District Court regarded Borland’s
appropriation of this hierarchy as infringement.177 Even when Borland
issued a new release of the QP emulation UI so that the Lotus command
words were no longer visible, the District Court found this too infringed
because QP was still utilizing the Lotus command structure, albeit
invisibly.178 The District Court conceived the command hierarchy to have,
in effect, become a nonliteral element of the program.

Borland’s reuse of the command structure of Lotus 1-2-3 was different
from the earlier UI cases. Unlike those defendants, Borland had developed
its own “native” UI for QP, which organized commands in a different way
than Lotus 1-2-3. But Borland provided an “emulation” UI that presented
users with the same commands in the same order as 1-2-3 so that
prospective customers who had built macros (i.e., mini-programs for
commonly executed sequences of spreadsheet functions) in the Lotus macro
language could use those macros in QP.

Because the command hierarchy of Lotus 1-2-3 was “a fundamental part
of the functionality of the Lotus macros,”179 Borland argued it was outside
the scope of copyright protection available to the Lotus program under
§ 102(b).180 This structure, Borland believed, was akin to the structure of
Selden’s bookkeeping forms, and as constituent elements of Lotus’ method
of operation or system, it was patent, not copyright, subject matter.181

 175. See, e.g., id. at 454–55.
 176. Borland, 49 F.3d at 810.
 177. Lotus Dev. Corp. v. Borland Int’l, Inc., 799 F. Supp. 203, 219 (D. Mass. 1992),
rev’d, 49 F.3d 807 (1st Cir. 1995).
 178. See generally Lotus Dev. Corp. v. Borland Int’l, Inc., 831 F. Supp. 223, 245 (D.
Mass. 1993).
 179. In Lotus Dev. Corp. v. Paperback Software Int’l, the District Court recognized the
functionality of the Lotus macro system, which allowed users to construct mini-programs
for commonly executed sequences of functions, but did not think it was relevant to
copyright protection for the command hierarchy. 740 F. Supp. 37, 64 (D. Mass. 1990).
Paperback had argued that macro compatibility required use of this hierarchy, but the court
found this unpersuasive. Id. at 69.
 180. Borland argued that Altai supported its macro-compatibility defense. Borland,
799 F. Supp. at 215–19.
 181. Borland’s argument is most clearly set forth in the First Circuit’s opinion. Lotus
Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 814 (1st Cir. 1995), aff’d by an equally
divided Court, 516 U.S. 233 (1996).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1247

The District Court did not find the user macro interoperability argument
persuasive.182 It viewed Borland’s copying of the 1-2-3 command structure
as infringement because the command hierarchy was not an abstract idea,
but rather concrete and detailed; in that court’s view, there were other ways
that spreadsheet commands could be named and organized, as evidenced by
QP’s native UI.183

Borland appealed its loss to the First Circuit.184 The main question on
appeal was what meaning to give to the exclusions set forth in § 102(b).185
Given the text of the statute and the legislative history explaining
Congress’s reasons for including § 102(b) in the statute, it seemed unlikely
that this court would rule that § 102(b) was merely a restatement of the
idea/expression distinction, as the District Court had opined in Borland.

In its ruling in Borland’s favor, the First Circuit held that the command
structure was a method of operation under § 102(b), although on a different
rationale than Borland argued.186 The First Circuit likened the command
hierarchy of Lotus 1-2-3 to the buttons for interacting with a VCR
machine.187 Both were, in its view, methods of operating machines to
accomplish functional tasks.188 As methods of operation, both were
unprotectable by copyright law. Although the First Circuit invoked Baker
in support of its holding, there was disappointingly little analysis in support
of the court’s conclusion, either about the implications of Baker or the
meaning that courts should give to § 102(b).189

The First Circuit viewed Borland as having literally copied the Lotus
command structure, but decided that didn’t matter because that structure,
however creative it might be, constituted a method of operation.190 It did

 182. Borland, 799 F. Supp. at 210 (“[I]t is irrelevant that the 1-2-3 interface includes
functional elements or ‘comprises a system’ so long as it includes separable expressive
elements.”). In its earlier ruling against Paperback, which had made a clone of Lotus 1-2-
3, the District Court dismissed as a “word game” Paperback’s argument that the Lotus
macro language was unprotectable by copyright law. Paperback, 740 F. Supp. at 72.
 183. Borland, 799 F. Supp. at 212–13.
 184. Borland, 49 F.3d at 812.
 185. Id.
 186. Borland argued that the facts and arguments in Baker were “identical” to those it
was making. The First Circuit was not convinced. Id. at 814.
 187. Id. at 817.
 188. For a similar metaphor, see Apple Computer v. Microsoft Corp., 799 F. Supp.
1006, 1023 (N.D. Cal. 1992), aff’d, 35 F.3d 1435 (9th Cir. 1994) (likening Apple’s
graphical user interface to the user interface for automobiles).
 189. Borland, 49 F.3d at 813–14; see also Weinreb, supra note 10, at 1207 (describing
the First Circuit’s analysis as “too short to be satisfactory”).
 190. Borland, 49 F.3d at 815–16.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1248 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

not, however, find persuasive Borland’s Baker-based argument that the
command structure was patent, not copyright, subject matter.191 The First
Circuit cited approvingly to Altai, but regarded the Second Circuit’s
decision as inapplicable because that case involved claims of non-literal
infringement, whereas Borland was, in its view, a literal copying case.192
Although literal copying of content from a copyrighted work is generally
more likely to be infringement, the First Circuit in Borland conceptualized
the command hierarchy as too functional to qualify as protectable
expression.193 Altai, in fact, had more to teach the First Circuit on
compatibility issues than the court perceived in Borland.194

Whether the 1-2-3 command hierarchy was a literal or nonliteral
element of the Lotus program is actually a more interesting question than
either the District Court or the First Circuit recognized.195 In some sense it
was both: users of the Lotus program can, of course, see the selection and
arrangement of command words when they use 1-2-3. Viewed as a
compilation of words, the command hierarchy looks like a literal
component of the program. Each command is, however, an abstraction that
not only identifies the particular function that the command represents, but
also provides users with a means to invoke that function, which, in turn, is
a nonliteral element embedded in the literal text of the program. U.S.
copyright law defines “computer program” as “a set of statements or
instructions to be used directly or indirectly in a computer in order to bring
about a certain result.”196 Viewed in this light, the program source and
object code is the literal expression of the software, and the UI command
hierarchy is an abstraction that identifies the set of functions that the

 191. Id. at 813–14. The First Circuit did not explain why it found the argument
unpersuasive. The patent or copyright subject matter issue is discussed infra Part V.
 192. Id. at 814–15.
 193. Id. at 815 (“The Lotus command hierarchy provides the means by which users
control and operate Lotus 1-2-3.”).
 194. See Brief Amici Curiae of American Committee for Interoperable Systems and
Computer & Communications Industry Ass’n in Support of Respondent, Lotus Dev. Corp.
v. Borland Int’l Inc., 516 U.S. 233 (1996) (No. 94-2003), 1995 WL 728487 (explaining
the relevance of Altai in the Borland case). Later cases, relying in part on Altai, recognized
that even literal copying may be excusable when necessary for achieving interoperability.
See, e.g., Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1547 (11th Cir. 1996).
 195. Weinreb noted the oddity of the parties’ positions about the nature of programs
that copyright could protect: Lotus taking a broad conception of programs, wanting to tie
its UI closely to the code, and Borland taking a narrow view, as though the code constituted
the program and the UI was a result of the program. Weinreb, supra note 10, at 1154–63.
 196. 17 U.S.C. § 101 (definition of “computer program”).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1249

program is capable of executing. The UI command structure is, moreover,
among the results that the program code produces.

The nonliteral character of the command hierarchy should have been
evident when Borland introduced the key reader version of QP, which
allowed macros constructed in 1-2-3 to be executed, even though users
could no longer see the commands.197 The First Circuit should have
recognized the macro system as a nonliteral element of the Lotus program
because it was neither visible to a 1-2-3 user through the UI, nor was it
associated with particular blocks of code.198

When the Supreme Court decided to hear Lotus’s appeal, it seemed that
the Court would finally provide an answer to the long-simmering question
of how courts should interpret the method and system exclusions of
§ 102(b) as applied to computer programs. However, the Court’s 4-4 split
affirmed the First Circuit ruling without setting a precedent or resolving the
circuit split on this issue.199

The deep split within the Court may have been due to some Justices
agreeing with the literal infringement approach taken by the District Court,
while other Justices may have seen some merit in the First Circuit’s
interpretation of § 102(b), as cryptic as that court’s analysis was, or in
Borland’s argument, that the command hierarchy was patent, not copyright,
subject matter.200

The sounder analysis supporting the ruling in Borland’s favor would
have focused on the essential role that the Lotus command structure played
in facilitating the functionality of the Lotus macro system. As the District
Court recognized, the command hierarchy was a “fundamental part of the

 197. Lotus Dev. Corp. v. Borland Int’l, Inc., 831 F. Supp. 223, 228 (D. Mass. 1993)
(“[T]he Key Reader file contains a virtually identical copy of the Lotus menu tree structure,
but represented in a different form and with first letters of menu command names in place
of the full menu command names.”). The District Court found infringement of the key
reader version of QP. Id. at 231. This, in effect, extended copyright protection to the
functional behavior of the program. See Pamela Samuelson, Brief Amicus Curiae of
Copyright Law Professors in Lotus Development Corp. v. Borland Int’l, Inc. (brief to U.S.
Supreme Court), 3 J. INTELL. PROP. L. 103, 131–32 (1996) (explaining why the District
Court’s ruling would have extended protection to the functional behavior of programs and
why copyright should not extend so far).
 198. An analogy may help to clarify the relationship among these components: The UI
of a program is akin to the face of a clock. The program code is like the mechanism inside
the clock that causes the hands of the clock to move. The macro system is like a specialized
part of the clock (e.g., the component that users can set to cause an alarm to ring at a
particular time).
 199. Lotus Dev. Corp. v. Borland Int’l, Inc., 516 U.S. 233 (1995).
 200. Brief for Respondent at 22–37, Lotus Dev. Corp. v. Borland Int’l Inc., 516 U.S.
233 (1996) (No. 94-2003), 1995 WL 728538.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1250 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

functionality of the Lotus macros.”201 That is, the Lotus command structure
was a critical component in the functioning of the macros because user-
created macros would not execute in QP unless exactly the same commands
were available, arranged in exactly the same order.202 The command
structure was thus a constituent element of the macros system that should
have been outside the scope of the Lotus copyright under § 102(b).203
Alternatively, the Court could have recognized that, in keeping with Altai,
there were external factors (i.e., the investment of users who had
constructed macros in the Lotus macro language) that constrained the
design choices of second comers (i.e., Borland because the command
structure was essential to achieving compatibility with user macros).204

Judge Boudin’s concurring opinion in Borland suggests the macro
compatibility consideration resonated with him:

[I]t is very hard to see that Borland has shown any interest in the
Lotus menu except as a fall-back option for those users already
committed to it by prior experience or in order to run their own
macros using 1-2-3 commands . . . [I]t is unlikely that users who
value the Lotus menu for its own sake—independent of any
investment they have made themselves in learning Lotus’

 201. Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37, 64 (D. Mass.
1990).
 202. See Pamela Samuelson, Computer Programs, User Interfaces, and Section 102(b)
of the Copyright Act of 1976: A Critique of Lotus v. Paperback, 55 LAW & CONTEMP. PROB.
311, 331–37 (1992) (explaining why the Lotus macro system was unprotectable under
§ 102(b)); see also Brief Amicus Curiae of Copyright Professors in Support of Respondent
at 3–5, Lotus Dev. Corp. v. Borland Int’l Inc., 516 U.S. 233 (1996) (No. 94-2003), 1995
WL 728563 (setting forth alternative theories about the application of § 102(b) to the Lotus
command hierarchy).
 203. That methods and systems and their constituent parts are unprotectable by
copyright law was recently affirmed in the Ninth Circuit’s Bikram’s Yoga decision. See
Bikram’s Yoga, 803 F.3d at 1039 (“An essential element of this ‘system’ is the order in
which the yoga poses and breathing exercises are arranged.”); id. at 1042 (“[T]he medical
and functional considerations at the heart of the [Bikram] Sequence compel the very
selection and arrangement of poses and breathing exercises for which he claims copyright
protection.”).
 204. See Brief Amici Curiae of American Committee for Interoperable Systems and
Computer & Communications Industry Ass’n in Support of Respondent, Lotus Dev. Corp.
v. Borland Int’l Inc., 516 U.S. 233 (1996) (No. 94-2003), 1995 WL 728487 (explaining
the relevance of Altai in the Borland case). A second alternative analysis would have
framed Borland as an instance in which functionality and expression had, in effect, merged
because of the role of the Lotus command hierarchy in enabling the functionality of the
macro system. See, e.g., Brief of the United States as Amicus Curiae at 19–21, Google Inc.
v. Oracle Am., Inc., 135 S. Ct. 2887 (2015) (No. 14-410), 2015 WL 2457656 (suggesting
a merger rationale for the Borland ruling); see also infra text accompanying note 382 for a
discussion of merger in relation to Borland.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1251

commands or creating macros dependent upon them—would
choose the Borland program in order to secure access to the Lotus
menu.205

Judge Boudin also took note of the lock-in effects that would result from
a ruling in Lotus’ favor:

[I]t is hard to see why customers who have learned the Lotus menu
and devised macros for it should remain captives of Lotus because
of an investment in learning made by the users and not by Lotus.
Lotus has already reaped a substantial reward for being first;
assuming that the Borland program is now better, good reasons
exist for freeing it to attract old Lotus customers: to enable the old
customers to take advantage of a new advance, and to reward
Borland in turn for making a better product. If Borland has not
made a better product, then customers will remain with Lotus
anyway.206

It is unfortunate that Judge Boudin did not find a way to connect this
concern to the Congressional intent that § 102(b) serve as a statutory tool
through which courts could take competition and ongoing innovation policy
considerations into account in construing the scope of copyright protection
in programs.207 He considered the majority’s interpretation to be
“defensible,” although he thought that fair use would be a closer doctrinal
fit, suggesting there was need for a new doctrine to address such
considerations.208

A compatibility-based § 102(b) argument should have prevailed in
Borland. Subsequent cases have done a somewhat better job than the First
Circuit in employing § 102(b) in software copyright cases.209 The Ninth
Circuit reaffirmed in 2000 that program interfaces necessary for achieving
interoperability are unprotectable procedures under § 102(b),210 and has

 205. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 820 (1st Cir. 1995), aff’d by
an equally divided Court, 516 U.S. 233 (1996) (Boudin, J., concurring).
 206. Id. at 821; see also Dan L. Burk, Method and Madness in Copyright Law, 2007
UTAH L. REV. 587, 591–92 (2007).
 207. See supra note 4 and accompanying text.
 208. Borland, 49 F.3d at 821–22 (Boudin, J., concurring).
 209. See, e.g., Incredible Techs. v. Virtual Techs., Inc., 284 F. Supp. 2d 1069, 1078
(N.D. Ill. 2003), aff’d, 400 F.3d 1007, 1012 (7th Cir. 2005); Mitek Holdings, Inc. v. Arce
Eng’g Co., 89 F.3d 1548, 1556–57 (11th Cir. 1996); Ilog, Inc. v. Bell Logic LLC, 181 F.
Supp. 2d 3, 12–14 (D. Mass. 2002); Torah Software Ltd. v. Drosnin, 136 F. Supp. 2d 276,
291–92 (S.D.N.Y. 2001); O.P. Solutions v. Intell. Prop. Network Ltd., No. 96 Civ. 7952
(LAP), 1999 WL 47191, at *16–18 (S.D.N.Y. Feb. 2, 1999).
 210. Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 602–03 (9th Cir.
2000).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1252 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

also held that a list of commands for the user interface of a computer
program is unprotectable by copyright law.211

It is fair to say that the First Circuit could have done a better job
explaining why the Lotus command hierarchy was an unprotectable system
or method of operation under § 102(b). This Section has explained that this
ruling was sound and consistent with the competition and innovation
policies expressed in other software copyright decisions that have construed
§ 102(b) as a limiting principle on the scope of copyright when
compatibility issues are at stake.

C. ORACLE V. GOOGLE

Google’s confidence that it could lawfully use command structures
derived from the Java API was built partly on the Borland decision’s
interpretation of § 102(b) and partly on the Ninth Circuit’s ruling that the
Sega interface was unprotectable under § 102(b).212 In the twenty years
since the Supreme Court punted on interpreting § 102(b) in Borland, the
First Circuit’s decision has been met with mostly positive reactions in the

 211. Ashton-Tate Corp. v. Ross, 916 F.2d 516, 521–22 (9th Cir. 1990) (rejecting
Ross’s claim of joint authorship based on having provided a list of commands for a
computer program on which he and another programmer were working, and agreeing with
the District Court that the list of commands was unprotectable under § 102(b)).
 212. See Brief of Appellee and Cross-Appellant Google Inc., Oracle Am., Inc. v.
Google Inc., No. 2013-1021 at 33–52 (relying on Sega v. Accolade), 57–65 (relying on
Lotus v. Borland) (Fed. Cir. 2013). Oracle sued Google in 2010 for infringing patents that
Oracle claimed read onto component elements of the Android mobile phone platform and
for infringing Oracle’s copyright in the Java platform, which was said to include code,
specifications, documentation and other materials. Oracle Am., Inc. v. Google Inc., 750
F.3d 1339, 1347–48 (Fed. Circ. 2014). The jury ruled against Oracle’s patent claims and
against its claims of copyright infringement in Java documentation; however, the jury
found Google to have infringed copyright in a range by checking the subroutine and in
structure of certain Java API packages (assuming that these were copyright-protectable, an
issue which the District Court reserved for itself). Id. Oracle’s appeal of the copyright
ruling went to the CAFC because of the patent claim in the complaint. The CAFC
acknowledged that it was obliged to follow Ninth Circuit precedent. Id. at 1353. This
section will show that it did not do so.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1253

courts.213 Many have followed it,214 some have distinguished it,215 and a few
have criticized or rejected it.216 The trial court in Oracle was one of the
followers.217 The CAFC, on the other hand, both distinguished and
criticized Borland in its decision in favor of Oracle.218

Although the facts of the Oracle case are more complicated than those
in Borland, the legal question in the two cases is remarkably similar:
whether a command structure designed to be implemented in computer
program code is unprotectable under § 102(b). In Oracle, the relevant

 213. Borland had been cited 133 times as of July 6, 2015, in the Lexis database. Of
these, 115 were positive citations; only 6 either distinguished or criticized the ruling.
Borland has been cited at least once in every circuit.
 214. See, e.g., Hutchins v. Zoll Med. Corp., 492 F.3d 1377, 1383–85 (Fed. Cir. 2007);
Incredible Technologies, 400 F.3d at 1012; Mitek, 89 F.3d at 1556–57; Wyatt Tech. Corp.
v. Malvern Instr. Inc., 2009 U.S. Dist. LEXIS 66097, at *6 (C.D. Cal. July 29, 2009);
Jamison Bus. Sys., Inc. v. Unique Software Support Corp., 2005 WL 1262095, at *12–13
(E.D.N.Y. May 26, 2005); see also Lexmark Int’l, Inc. v. Static Control Components, 387
F.3d 522, 538 (6th Cir. 2004) (citing Borland approvingly); O.P. Solutions, 1999 WL
47191, at *8 (citing Borland approvingly).
 215. See, e.g., Maddog Software, Inc. v. Sklader, 382 F. Supp. 2d 268, 278–82 (D.
N.H. 2005) (applying Altai filtration in software copyright case).
 216. See, e.g., Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1371–72 (10th Cir. 1997)
(rejecting § 102(b) defense based on Borland, but affirming non-infringement ruling
because command codes were either unoriginal or unprotectable as scenes a faire). Most
commentators, however, have cited to Borland approvingly. See, e.g., Christina Bohannan,
Reclaiming Copyright, 23 CARDOZO ARTS & ENT. L.J. 567, 592–93 (2006); Burk, supra
note 206, at 591–92; Thomas F. Cotter, The Procompetitive Interest in Intellectual
Property Law, 48 WM. & MARY L. REV. 483, 510 n.115 (2006); Stacey L. Dogan & Joseph
P. Liu, Copyright Law and Subject Matter Specificity: The Case of Computer Software, 61
N.Y.U. ANN. SURV. AM. L. 203, 211–12 (2005); Herbert Hovenkamp, Response: Markets
in IP and Antitrust, 100 GEO. L.J. 2133, 2144 n.54 (2012); Dennis S. Karjala, A Coherent
Theory for the Copyright Protection of Computer Software and Recent Judicial
Interpretations, 66 U. CIN. L. REV. 53, 105–07 (1997); Peter Lee, The Evolution of
Intellectual Infrastructure, 83 WASH. L. REV. 39, 84–85 (2008); Aaron K. Perzanowski,
Rethinking Anticircumvention’s Interoperability Policy, 42 U.C. DAVIS L. REV. 1549, 1563
n.39 (2009); Michael Risch, How Can Whelan v. Jaslow and Lotus v. Borland Both Be
Right? Reexamining the Economics of Computer Software Reuse, J. MARSHALL J.
COMPUTER & INFO. L. 511, 545–46 (1999).
 217. Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 990–91 (N.D. Cal. 2012).
 218. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1364–68 (Fed. Cir. 2014). The
CAFC distinguished Borland because that defendant had not literally copied any Lotus
code, whereas in the CAFC’s view, Google had literally infringed Oracle code. Id. at 1365.
However, it disagreed with Borland’s conclusion that creative methods of operation were
ineligible for copyright protection. Id. at 1366–67. The CAFC’s decision is, in this respect,
at odds with Ninth Circuit precedents. See, e.g., Bikram’s Yoga Coll. of India, L.P. v.
Evolation Yoga, LLC, 803 F.3d 1032, 1035–44 (9th Cir. 2015) (recognizing that Bikram’s
selection and arrangement of yoga poses and breathing exercises was creative, but rejecting
its copyright claims because the poses and exercises were constituent elements of an
unprotectable method or system).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1254 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

command structure drew upon 37 of the 166 Java API packages that Google
incorporated into Android.

Some technical background is necessary to inform the legal analysis.
The Java API is tightly organized in a set of 166 “packages.”219 Each
package identifies types of functions which specific elements of the Java
API make available to programmers.220 The engineers who developed the
Java API assigned a specific name to each package. Within each package
are numerous related classes of functions. Each class consists of numerous
variables and method headers (sometimes called declarations) that specify
the type of subroutine to be carried out when the command for that function
is invoked.221 The 37 Java API packages at issue in Oracle consisted of
600+ classes, and 6000+ method headers. Google believed that these classes
and method headers were unprotectable elements of the Java API,

 219. The District Court made extensive findings of fact about the Java API packages
at issue. See Oracle, 872 F. Supp. 2d at 977–83. It indicated that all of the “declarative fact
statements set forth in the order are factual findings.” Id. at 977 n.3.
 220. For example, java.math is the package for programming arithmetic functions,
whereas java.awt.font is the package for classes and interfaces for fonts. For short
descriptions of the Java API packages, see https://docs.oracle.com/javase/1.5.0/docs/
api/overview-summary.html [https://perma.cc/EU3L-39HA].
 221. For short descriptions of the functionally related sets of classes and declarations
within packages, see http://docs.oracle.com/javase/1.5.0/docs/guide/ [https://perma.cc/
T9LC-G8R4].
 The command structure of the Java API has a standardized format: package.
Class.method. An example method header is:
 package java.lang;

 public class Math {
 public static int max(int x, int y);
 }

This specification identifies the Java command java.lang.Math.max, which calls for
carrying out the mathematical operation of comparing two numbers and returning the
larger of the two. The following line of code uses (or “invokes”) that method for computing
the maximum of the values stored in variables i and j, storing the resulting value in variable
k:

 k = java.lang.Math.max(i, j);

This command may be abbreviated:

 k = Math.max(i, j);

or even further abbreviated as: max().

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1255

contending, as Borland had before it, that its reimplementation of these
unprotectable elements in independently written code did not infringe.222

The District Court recognized that “[t]he overall name tree [of the Java
API packages] has creative elements,” but it was also “a precise command
structure—a utilitarian and functional set of symbols, each to carry out a
preassigned function.”223 Because of this, the court concluded that “[t]his
command structure is a system or method of operation under Section 102(b)
of the Copyright Act and, therefore, cannot be copyrighted.”224 It perceived
its ruling to be consistent with the First Circuit’s decision that the command
structure of Lotus 1-2-3 was uncopyrightable under § 102(b).225

The District Court made a finding that compatibility considerations
explained why Google had drawn upon the Java API for the Android
platform: “Google believed Java application programmers would want to
find the same 37 sets of functionalities in the new Android system callable
by the same names as used in Java. Code already written in the Java
language would, to this extent, run on Android and thus achieve a degree of
interoperability.”226 Java programmers, the court noted, had written
millions of lines of code using these method headers and classes, and reuse
of that code on the Android platform required use of the same method
headers.227 Although Google copied the exact names and functions of the
Java API classes and method headers, the court noted that Google “took
care to use different code to implement the six thousand-plus subroutines
(methods) and six-hundred-plus classes.”228

Oracle’s appeal found a very receptive audience in the CAFC. There
were three main bases for the CAFC’s decision. One concerned the
“copyrightability” issue in the case. The CAFC agreed with Oracle that the
API packages at issue were protectable by copyright law under § 102(a)

 222. Oracle, 872 F. Supp. 2d at 998.
 223. Id. at 976–77.
 224. Id. at 977.
 225. Id. at 990–91. While concluding that § 102(b) provided a sound basis for its ruling
in Google’s favor, the District Court proffered the merger doctrine as an alternative ground
because “[u]nder the rules of Java, [the method headers] must be identical to declare a
method specifying the same functionality.” Id. at 976. The merger doctrine is discussed in
Part IV.
 226. Id. at 978. The District Court also held that the names of the individual commands
were unprotectable under the copyright doctrine that words and short phrases cannot be
copyrighted. Id. at 997. Although I will not address this aspect of the District Court’s ruling,
it is not implausible given judicial receptivity to this defense in rulings such as Southco,
Inc. v. Kanebridge Corp. See 390 F.3d 276, 285 (3d Cir. 2004).
 227. Oracle, 872 F. Supp. 2d at 1000.
 228. Id. at 977.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1256 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

because Sun’s engineers had been highly creative in designing the Java API,
including in naming and organizing the method headers and the classes of
the API packages.229 Hence, copyright’s originality standard was easily met
and the resulting expression was copyright-protectable. The CAFC thought
that the protection conferred by § 102(a) could not be taken away by
§ 102(b).230 As in Whelan, the CAFC perceived § 102(b) to be a restatement
of the idea/expression distinction, which had no pertinence in a case
involving a highly detailed structure, such as the Java API packages.231

However, the CAFC did not correctly understand the copyrightability
issue in the case. Courts use that term in three different ways: sometimes
they use it to indicate that a particular work is (or is not) proper subject
matter for copyright protection (e.g., a literary work),232 sometimes to
indicate that the originality and fixation requirements have (or have not)
been met as to a particular work,233 and sometimes to indicate that the aspect
of a work that the defendant copied was outside the scope of copyright
protection available to that work.234

The CAFC seems to have regarded the District Court as having used the
term in the first or second sense, which explains why it regarded Google’s
§ 102(b) defense as calling into question the copyrightability of all program
code.235 However, the District Court in Oracle, like the First Circuit in
Borland, used the term “copyrightability” in the third sense of the term. The
District Court did not question the copyrightability of the work at issue in
the case, namely, the Java Special Edition 5.0 document from which Google
drew the 37 API packages.236 Rather, the District Court understood Oracle

 229. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1356 (Fed. Cir. 2014).
 230. Id. at 1556–57.
 231. Id. at 1367–68.
 232. See, e.g., Kelley v. City of Chicago, 635 F.3d 290, 306 (7th Cir. 2011) (gardens
not copyrightable subject matter).
 233. See, e.g., Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 362–63 (white
pages listings of telephone directories are uncopyrightable because they lack sufficient
originality to support copyright).
 234. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815 (1st Cir. 1995), aff’d by
an equally divided Court, 516 U.S. 233 (1996) (considering whether the Lotus command
hierarchy was “copyrightable” part of the Lotus program).
 235. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1379–81 (Fed. Cir. 2014).
 236. The work of authorship at issue in Oracle was not, in fact, a computer program,
as the CAFC opinion seems to imply, id. at 1355–56, but was a textual document entitled
Java Special Edition 5.0, which sets forth the component parts of the Java API. Oracle Am.,
Inc. v. Google Inc., 872 F. Supp. 2d 974, 979 (N.D. Cal. 2012). The Java Platform Special
Edition document sets forth the specification of the Java API as well as providing other
pertinent Java platform information. The current version of this document can be found at

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1257

to be claiming that Google’s use of the 6000+ method headers constituted a
non-literal infringement of that document.237 The District Court understood
the Oracle case to present a scope of protection issue, that is, whether the
command structure of these method headers was protectable by copyright
law.238

Second, the CAFC accepted Oracle’s claim on appeal that Google
literally copied 7000 lines of Oracle source code, as well as nonliterally
copied the SSO of the Java API classes.239 However, this directly
contradicted the District Court’s factual finding that there was no literal
copying of program code. “[A]ll agreed,” it said, “that Google had not
literally copied the software but had instead come up with its own
implementations of the 37 API packages.”240 The CAFC did not understand
that the API elements that Google used in Android were not in themselves
software; they were specifications that identified functions that the program
was designed to perform. In order to write programs to implement these
functions in accordance with rules set forth in the Java API, the source code
must include the API method headers (or declarations); those method
headers, however, do not become part of the executable code.241 The
CAFC’s misperception about the literal or nonliteral copying issue
reinforced its conception that Google’s defense would undermine software
copyright protection.

Third, the CAFC disagreed strongly with the District Court about
Google’s compatibility defense. The CAFC categorically denied that the
case law had recognized a “compatibility exception” to copyrightability of

https://docs.oracle.com/javase/8/ [https://perma.cc/4AUB-JAVN]. This document can be
downloaded for free from a public website.
 237. Id. at 975 (all agreed that Google had not literally copied Oracle software).
 238. Id. at 975–76.
 239. Oracle, 750 F.3d at 1361. Oracle should not have been able to change its theory
of the facts on appeal to make Google’s defense seem weaker. Had the Supreme Court
taken the case, Oracle should have been treated as a nonliteral infringement case, not a
literal copying case.
 240. Oracle, 872 F. Supp. 2d at 975. Under the Supreme Court’s recent decision in
Teva Pharm. v. Sandoz, 574 U.S. ___, 135 S. Ct. 831 (2015), the CAFC should have
deferred to lower court findings of fact and reversed them only when the findings were
clearly in error.
 241. Like the District Court in Oracle, one post-Oracle decision has distinguished
declaring code (i.e., method headers), the function of which was to call for the performance
of a particular function, and implementing code, the function of which was to be the object
code to carry out that function. SAS Inst., Inc. v. World Programming Ltd., 64 F. Supp. 3d
755, 777 (E.D.N.C. 2014).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1258 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

program APIs.242 Echoing Franklin, the CAFC characterized compatibility
“as a commercial and competitive objective,” which had no bearing on
copyrightability.243 In addition, it perceived no evidence that the design of
the Java API packages were constrained by “compatibility requirements” of
pre-existing programs, the only constraints it thought might have
significance.244 The CAFC was also skeptical of the defense, saying
“Google designed Android so that it would not be compatible with the Java
platform,”245 thereby defeating the Java goal of allowing programmers to
“write once, [code that will] run everywhere.”246 This frontal attack, not
only on Google’s compatibility defense in Oracle, but on compatibility
defenses in software copyright cases, requires a more elaborate response.

D. THE IMPLICATIONS OF § 102(b) FOR COMPATIBILITY DEFENSES

The functionality of computer program APIs is unquestionable insofar
as programs can interoperate with existing programs only if they conform
to the interface procedures that existing programs have adopted. This
explains why the Ninth Circuit has twice unequivocally affirmed that APIs,
insofar as they constitute the functional requirements for achieving
compatibility with other programs, are unprotectable procedures under
§ 102(b).247 The Ninth Circuit has thus recognized in these and subsequent
cases that § 102(b) is more than merely a restatement of the idea/expression
distinction,248 a proposition that the CAFC refused to accept in its Oracle
decision.249 For more than two decades, courts have consistently followed

 242. Oracle, 750 F.3d at 1368–71. Yet, in Atari Games, the CAFC intimated that no
infringement might have been found if AG had copied only what was necessary for
interoperability. 975 F.2d 832, 844–45 (Fed. Cir. 1992).
 243. Oracle, 750 F.3d at 1371 (quoting Apple Comput., Inc. v. Franklin Comput.
Corp., 714 F.2d 1240, 1253 (3d Cir. 1983)).
 244. Id.
 245. Id.
 246. Id. at 1348.
 247. See Sony Comput. Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 602–05 (9th
Cir. 2000); Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522 (9th Cir. 1992).
 248. See also Bikram’s Yoga, 803 F.3d at 1041 (“That the sequence may possess many
constituent parts does not transform it into a proper subject matter of copyright protection.
Virtually any process or system could be dissected in a similar fashion.”). Defendants in
the Oracle, Cisco v. Arista and Synopsys v. ATopTech cases tried to persuade the Ninth
Circuit to amend its Bikram’s Yoga decision to clarify that the CAFC has misunderstood
Ninth Circuit law concerning § 102(b). See Motion for Leave to File Brief Amici Curiae
of Google Inc., Arista Networks, & ATopTech, Inc., and Brief Amicus Curiae of Google
Inc., Arista Networks, & ATopTech, Inc., at 3–12, Bikram’s Yoga Coll. of India, L.P. v.
Evolation Yoga, LLC, 803 F.3d 1032 (2015) (No. 13-55763).
 249. See Oracle, 750 F.3d at 1365–67. The CAFC has previously recognized that
§ 102(b) has broader significance. See Hutchins v. Zoll Med. Corp., 492 F.3d 1377, 1383

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1259

the rulings in Sega and Altai that program interfaces necessary for
interoperability are unprotectable by copyright law,250 making the CAFC’s
Oracle decision an outlier. Although the CAFC recognized in Oracle that it
should apply Ninth Circuit case law,251 and even purported to do so,252 its
ruling is at odds with Ninth Circuit precedents. Because the Supreme Court
decided not to review the CAFC ruling,253 software developers now face an
uncertain future when they raise compatibility defenses.254

The CAFC’s Oracle decision is most worrisome in its outright
repudiation of software compatibility defenses, its resurrection of the anti-
compatibility Franklin dictum, and its refusal to acknowledge that the Ninth
Circuit in Sega and Connectix treated program interfaces as unprotectable
procedures under § 102(b). As amicus curiae briefs of computer scientists,
software companies, industry associations, and public interest groups filed
in support of Google’s petition for certiorari attest,255 freedom to reuse
APIs, insofar as they are necessary for interoperability, promotes healthy
competition and ongoing innovation in the software industry. More than
two decades of copyright rulings have endorsed this freedom, and the
software industry has flourished under this legal regime.256 While one can

(Fed. Cir. 2007) (“[C]opyright protection does not extend to the methods that are performed
with program guidance.”).
 250. See infra text accompanying notes 259–64 for a review of those cases.
 251. Oracle, 750 F.3d at 1353. Oracle’s appeal of the District Court’s copyright ruling
went to the CAFC, instead of the Ninth Circuit, because Oracle had alleged patent, as well
as copyright, infringement. Id.
 252. See 2 PAUL GOLDSTEIN, GOLDSTEIN ON COPYRIGHT, § 2.15.2.1 (3d ed. 2005 &
Supp. 2016) (arguing CAFC purported to follow Ninth Circuit law in Oracle). The CAFC
disingenuously interpreted Sega as having considered compatibility as a factor in fair use
analysis, choosing to ignore the court’s unequivocal statements about interface procedures
being excluded from copyright under § 102(b). See Oracle, 750 F.3d at 1369–70. The
CAFC said that compatibility could be considered in connection with Google’s fair use
defense on remand. Id. at 1372–77. In rejecting the District Court’s copyrightability ruling,
the CAFC relied on its decision in Atari Games Corp. v. Nintendo of Am., Inc., 897 F.2d
1572 (Fed. Cir. 1990) (also rejecting a software compatibility defense), which the CAFC
regards as a correct interpretation of Ninth Circuit law. Oracle, 750 F.3d at 1353–61.
 253. Google Inc. v. Oracle Am., 135 S. Ct. 1021 (2015).
 254. At risk are compatibility defenses in the Cisco v. Arista and Synopsys v. ATopTech
cases because the plaintiffs included a patent claim in the case, meaning any appeal will go
to the CAFC. See supra note 30.
 255. Briefs available online at Google Inc. vs. Oracle America, Inc., SCOTUSBLOG,
http://www.scotusblog.com/case-files/cases/google-inc-v-oracle-america-inc/ [https://perma.cc/
XC5H-78ZL].
 256. See, e.g., Brief Amicus Curiae of Computer and Communications Industry Ass’n
in Support of Petitioner at 4–8, Oracle, 135 S. Ct. 1021 (2015) (No. 14-410), 2014 WL
5868946 (emphasizing importance of pro-compatibility decisions in fostering competition
and innovation in the software industry).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1260 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

hope that courts in the future will reject the CAFC’s analysis in Oracle, or
distinguish Oracle from other compatibility cases,257 that decision has
reopened a longstanding debate about the scope of copyright in computer
programs, about the implications of § 102(b), as well as about compatibility
defenses. The CAFC would shunt compatibility considerations away from
§ 102(b) and merger defenses, leaving them to the case-by-case vagaries of
fair use.258

Before attempting to grapple with the different perspectives in the
District Court and CAFC’s interpretations of Google’s compatibility and
§ 102(b) defenses, it is useful to recognize that several different types of
interoperability issues have arisen in prior cases.

1. Competing Applications’ Compatibility with the Same Operating
Systems: In Altai, the litigants were competitors in the market for
scheduling programs designed to interoperate with IBM operating system
programs.259 Similarities in the parameter lists for these programs were
largely due to the need to conform to IBM’s interface procedures.

2. Unlicensed Application Developer Compatibility with a Popular
Platform: In Sega, Accolade wanted to adapt an existing videogame
program so it would run on the Sega Genesis platform.260

3. Emulation Software to Enable Applications Developed for a
Popular Platform to Run on an Alternative Platform: Connectix
developed a program to emulate the functionality of the Sony PlayStation

 257. The only post-Oracle decision to address the substance of the CAFC’s ruling so
far was SAS Inst., Inc. v. World Programming Ltd., 64 F. Supp. 3d 755, 777 (E.D.N.C.
2014). SAS argued that the CAFC’s ruling undermined WPL’s compatibility defense.
WPL developed software that emulated the functionality of the SAS statistical analysis
program so that users of the SAS program could switch to its program and still reuse the
scripts (mini-programs) they had constructed in the SAS language. The court distinguished
the CAFC’s ruling, saying that WPL had only used the SAS language, which under the
Oracle decision, all were free to use. Id. at 776–78.
 258. See Oracle, 750 F.3d at 1371–77. The CAFC remanded the case for retrial on the
fair use issue. Id. at 1376–77. See infra notes 363, 455 and accompanying text for a
discussion of compatibility issues in the context of fair use.
 259. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 714–15 (2d Cir. 1992).
 260. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1514–15 (9th Cir. 1992).
Similar to Sega was Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832 (Fed. Cir.
1992). Like Accolade, Atari Games (AG) sought to develop videogames that would run on
a popular platform. Id. at 836–37. The CAFC rejected AG’s interoperability defense
because AG had copied more from Nintendo’s program than was necessary to achieve
interoperability. Id. at 845.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1261

platform, so that games developed for that platform could be played on the
defendant’s virtual machine.261

4. Emulation of a Feature to Enable Prospective Customers’ Mini-
Programs Created in One Program to Run on a Competing Program:
Borland created an emulation user interface to enable interoperability with
user-created macros.262

5. Development of a New Operating System to Enable Continued
Use of an Application Program: In Bateman v. Mnemonics, Inc., the
defendants had to develop their own operating system to interoperate with
an application program they had developed for their business before
Bateman terminated their license to use his OS to run the application.263

6. Reuse of Software to Achieve Compatibility with Hardware: In
Lexmark, Static Control developed chips loaded with a copy of a Lexmark
program so that Lexmark’s competitors could make printer cartridges that
would successfully interoperate with Lexmark printers.264

Despite the factual and contextual differences among these cases, the
courts in each held that the interfaces necessary for achieving technical
interoperability were unprotectable elements of copyrighted software. The
CAFC in Oracle, however, refused to acknowledge this.265 These six types

 261. Sony Comput. Entm’t, Inc. v. Connectix Corp., 203 F.3d 596 (9th Cir. 2000).
Connectix was like Franklin, except that Connectix reimplemented the interface in non-
infringing code instead of copying the platform code bit for bit, as Franklin had. Id. at 601.
 262. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 810 (1st Cir. 1995). Similar
to Borland was SAS Inst., Inc. v. World Programming Ltd., 2013 EWCA Civ. 1482 (UK
Ct. Ap. 2013) (not infringement to emulate the interface and functionality of SAS software
to enable users to port over to another platform the mini-programs they had constructed in
the SAS language). See also SAS v. WPL, 64 F. Supp. 3d at 775–78; Bay State Tech., Inc.
v. Bentley Sys., Inc., 946 F. Supp. 1079, 1088 (D. Mass. 1996) (not infringement for CAD
software competitor to develop data translator software to allow files created in plaintiff’s
program to be “read” in the defendant’s program).
 263. Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1536–40 (11th Cir. 1996). The
defendants reverse-engineered Bateman’s OS to discern elements needed to achieve
compatibility, which they claimed required copying of some literal code. Id. at 1539 n.18,
1545.
 264. Lexmark Int’l, Inc. v. Static Control Components, 387 F.3d 522, 530–31 (6th Cir.
2004); see also Secure Services, 722 F. Supp. at 1356–64 (not infringement to reimplement
competitor’s variation of a standard protocol so new entrant could sell interoperable secure
fax machines to the U.S. government and its contractors); NEC Corp. v. Intel Corp., 10
U.S.P.Q.2d 1177, 1188 (N.D. Cal. 1989) (rejecting Intel’s claim of infringement of
microcode that was necessary to enable NEC’s hardware to be compatible with Intel’s
hardware). But see Compaq v. Procomm, 908 F. Supp. 1409 (S.D. Tex. 1995) (parameters
and their sequence not protectable, but preliminary injunction issued because defendant
copied more than was necessary to achieve compatibility with Compaq hard drives).
 265. Oracle, 750 F.3d at 1370–71.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1262 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

of technical compatibility cases might seem to suggest that APIs, by their
nature, should be considered unprotectable elements of computer programs.
The District Court in Oracle did not interpret these precedents so broadly;
indeed, it rejected Google’s legal argument to this effect earlier in the
case.266 The District Court regarded its holding as a narrow one: the Java
API elements at issue in Oracle were unprotectable methods or systems
under § 102(b).267 The law is unsettled as to whether all interfaces, APIs,
and command structures should be treated the same.268 The terms
“interface,” “APIs,” and “interoperability” unfortunately do not have fixed
and unalterable meanings.269

The District Court regarded Google’s interest in enabling technical
compatibility of Java programs with the Android platform as a legitimate
explanation for Google’s use of the Java API packages. It observed, for
instance, that “millions of lines of code had been written in Java before
Android arrived,” and all of them had “necessarily used the
java.package.Class.method() command format.”270 These programs had
been developed and were owned by firms other than Google.

In order for at least some of this code to run on Android, Google
was required to provide the same java.package.Class.method()
command system using the same names with the same ‘taxonomy’
and with the same functional specifications.271

Hence, it was not just Google that was interested in enabling Java
programs to run on Android; the developers of existing programs would
want them to run (or be easily adapted to run) on Android too. The District
Court found that Google had used “what was necessary to achieve a degree
of interoperability—but no more, taking care, as said before, to provide its
own implementations.”272 In this respect, the District Court thought Oracle

 266. Oracle Am. Inc. v. Google Inc., 810 F. Supp. 2d 1002 (N.D. Cal. 2011).
 267. Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 1000–01 (N.D. Cal. 2012).
 268. Bateman, 79 F.3d at 1547 (rejecting argument that interface specifications are
uncopyrightable as a matter of law). A document that sets forth the component elements of
an API with original commentary to aid users would be copyrightable, but the copyright in
that document should not be infringed insofar as reuse of the specified API is necessary to
achieve program interoperability.
 269. See, e.g., BAND & KATOH, INTERFACES 2.0, supra note 10, at 41; see generally
ASHWIN VAN ROOIJEN, THE SOFTWARE INTERFACE BETWEEN COPYRIGHT AND
COMPETITION LAW: A LEGAL ANALYSIS OF INTEROPERABILITY IN COMPUTER PROGRAMS
(2010).
 270. Oracle, 872 F. Supp. 2d at 1000.
 271. Id.
 272. Id.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1263

was analogous to the Sega and Connectix cases.273 Connectix seemed
especially relevant because that defendant, like Google, had achieved only
partial interoperability.274

The CAFC directly challenged Google’s interoperability claim, saying,
“Google designed Android so that it would not be compatible with the Java
platform.”275 There was, in its view, “no evidence in the record that any
[fully Java-compatible] app [running on Android] exists and [the trial court]
points to no Java apps that either pre-dated or post-dated Android that could
run on the Android platform.”276 The CAFC should, however, have either
deferred to the District Court’s factual finding that millions of lines of Java
code could run on Android, even if that court did not identify specific
programs, or have sent the case back to the District Court for further
proceedings to develop a fuller record about compatibility issues.277

The CAFC asserted that Google adopted the 37 API packages for
Android “to capitalize on the fact that software developers were already
trained and experienced in using the Java API packages at issue.”278 That
is, Google’s use of Java API method headers would make it easier for
Google to attract Java developers to create apps for the Android platform.
The CAFC seemed to perceive this as unfair free-riding because it would
“accelerat[e]” Google’s development process “by ‘leverag[ing] Java for its
existing base of developers.’”279 The CAFC may also have been swayed by
the existence of a licensing program that Oracle (and its predecessor Sun)
had established to ensure that Java compatibility goals would be
maintained, which Google arguably bypassed by using Java packages in
Android without a license.280 Oracle claimed that Google’s success with

 273. Id.
 274. Id. at 1000–01 (noting that Connectix implemented only 137 of 242 Sony BIOS
functions).
 275. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1371 (Fed. Cir. 2014).
 276. Id.
 277. See supra note 240 (concerning the deference issue). The CAFC was incorrect in
asserting that no pre-existing Java programs can run on the Android platform.
 278. Oracle, 750 F.3d at 1371. The CAFC also rejected Google’s argument that the
Java API command structure had become unprotectable because it was an industry
standard. Id. at 1372. Google had made this claim below, but failed to present evidence to
support it. Oracle, 872 F. Supp. 2d at 999 n.9.
 279. Oracle, 750 F.3d at 1371.
 280. See id. at 1350. Google had negotiated with Sun for a time to license the Java
technology, but thought it did not need a license to use only parts of the API and not the
suite of Java technologies that Sun licensed to some developers. The failure to license the
API did not cut against Accolade in Sega. See 977 F.2d 1510, 1514 (9th Cir. 1992).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1264 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

Android had “fragment[ed]” Java, defeating its purpose, and thwarting
Oracle’s ability to develop its own mobile platform.281

Let us accept that Google’s motivation in adopting those 37 Java API
packages was, in no small part, to facilitate a kind of human interoperability.
Oracle has estimated that there are roughly nine million Java programmers
in the world.282 All have made significant investments in learning the rules
and syntax of Java, as well as in using the method headers and classes of
Java API packages, and implementing the Java API in programs that run on
a wide variety of machines to accomplish a wide range of tasks. They are
familiar with Java commands and command structures. When they write
code, they express themselves with Java commands. If Judge Boudin was
right to consider user investments in learning the Lotus command structure
and constructing macros in the Lotus language as supporting Borland’s right
to reimplement the Lotus command hierarchy in QP,283 other courts should
be receptive to user investments in learning to use Java as a consideration
that weighs in favor of limiting the scope of copyright in cases such as
Oracle.

It is understandable that Java programmers want to reuse command
names to identify specific functions that their programs are designed to
perform. Naming commands is difficult because

[e]ach name must succinctly and intuitively capture the role and
function of the concept being named. Because programs use more
names than can be reasonably remembered, the names must be

 281. These points were heavily emphasized in Oracle’s brief to the CAFC. See
Opening Brief and Addendum of Plaintiff-Appellant [hereinafter Opening Brief] at 13–29,
51–55, Oracle, 750 F.3d 1339 (No. 13-1021), 2013 WL 518611. Sun had, in fact,
developed Java Micro Edition platforms for mobile devices that were not fully compatible
with the Java language specification. Java MEs have been used on a large number of mobile
devices. These platforms did not achieve as much success as Android, in part because of
their use of “draconian” security measures and putting interests of telco carriers above
interests of users. See Matthew Powell, Why did Nokia fail to compete with Samsung, Apple
etc., despite being the giant of the mobile phone industry?, QUORA (Feb. 15, 2015),
http://www.quora.com/Why-did-Nokia-fail-to-compete-with-Samsung-Apple-etc-despite-
being-the-giant-of-the-mobile-phone-industry [https://perma.cc/493C-BHPV].
 282. Nikita Salnikov-Tarnovski, How Many Java Developers Are There in the World?,
DZONE (July 20, 2012), https://dzone.com/articles/how-many-java-developers-are
[https://perma.cc/GVL8-GVRV].
 283. See supra text accompanying notes 205–208; see also John Bergmayer,
Compatibility is About Competition, Too, PUBLIC KNOWLEDGE (Feb. 26, 2015),
https://www.publicknowledge.org/news-blog/compatibility-is-about-competition-too
[https://perma.cc/Z9FY-J943] (“It’s about allowing developers to make the most of their
skills and their code, not about Android trying to take something away from Oracle’s
version of Java.”).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1265

systematized to be easy to reconstruct and interpret later. This, in
turn, will affect how easily you or others can understand, fix, and
extend that same code months or years later. As a result, bad
names create buggy code, and good names can deliver tremendous
boosts to team productivity.284

The Java API systematized names in a very efficient way, which is why
the language and the API has been so widely used. The creators of Java can,
of course, take some credit for this success, but they cannot take all of it,
just as they cannot claim ownership over consumer choice and investment
in determining the popularity of any given product.285

Oracle contended that Google could have used different names for
method headers for specific functions in support of its claim that Google
did not have to copy the method headers that Sun’s engineers developed.286
In effect, Oracle was arguing that Google should have forced Java
programmers to learn a new dialect of Java to write apps for the Android
platform. Yet, had Google developed a new Java dialect, Google would
have confused Java programmers who would have had to relearn to program
in Java in a different way for Android than for other devices. This would
have caused a much more serious fragmentation of Java than Google caused
by adopting only 37 of the Java packages instead of all of them. So if Oracle
really valued the integrity of Java, it would not have wanted Google to
develop alternative method headers in the Java language.

The best way to have avoided the fragmentation of Java, of which
Oracle complained, would have been for Google to adopt all 166 of the API
packages instead of just 37 of them. Had Google adopted all 166 packages,
a more complete interoperability of Java programs on Android would
presumably have been achieved. It would also have made the Oracle case
more like Sega.

The Java API may be a much more complex procedure than the Genesis
interface at issue in Sega, but the complexity of a procedure does not change
its essential character. Under Ninth Circuit precedents,287 the Java API and
its constituent parts would be unprotectable under § 102(b) insofar as its use

 284. Excerpt from an online discussion in answer to the question “Why is naming
things hard in computer science and how can it be made easier?”, QUORA (answer updated
Feb. 17, 2014), http://quora.com/Why-is-naming-things-hard-in-computer-science-and-
how-can-it-be-made-easier [https://perma.cc/AW92-BEEZ].
 285. See generally Michal Shur-Ofry, Popularity as a Factor in Copyright Law, 59 U.
TORONTO L.J. 525 (2009).
 286. See Opening Brief, supra note 281, at 32–33, 51–52.
 287. See Sony Comput. Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 602–03 (9th
Cir. 2000); Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1526 (9th Cir. 1992).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1266 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

was needed to achieve interoperability, as the District Court in Oracle
held.288

Even if the Java API as a whole might be an unprotectable system,
method, or procedure under Ninth Circuit precedents, it is unclear whether
or why the structure of 37 of the Java API packages should be regarded as
constituting a system or method of operation. The District Court did not
explain why a subset of the API should be regarded as a system or method
as well.

Yet, if we accept that the Java API as a whole was an unprotectable
system or procedure, it would be logical to conclude that its constituent parts
should be unprotectable as well. The Ninth Circuit did not treat Connectix’s
partial implementation of the Sony PlayStation interface as any less of a
procedure than in Sega.289 Consider also that a second comer would be free
to copy 6000 items from an uncopyrightable compilation of 60,000 white
pages listings of a telephone directory. Baker did not copy Selden’s forms
exactly, but rather adapted the forms so that it would be easier for
accountants to enter data on an ongoing basis.290 Baker thus used some of
the Selden system in his forms, but he did not become an infringer for not
using all of it. Consider further that Android is a special purpose platform
for mobile devices, a type of platform that was not in contemplation when
Java was developed. The success of Java has mainly been achieved with
server-side systems and large-scale enterprise software that can run on
multiple machines. It stands to reason that a special purpose platform for
mobile devices would need to have some of the same, but also some
different, functionalities that its API would need to accommodate. This
could explain why Google used only some, but not all, of the Java API

 288. Oracle, 872 F. Supp. 2d at 997–1000; see Atari Games Corp. v. Nintendo of Am.,
Inc., 897 F.2d 1572, 1575 (Fed. Cir. 1990) (“When the questions on appeal involve law
and precedent on subjects not exclusively assigned to the Federal Circuit, the court applies
the law which would be applied by the regional circuit.”) (quoted in Oracle, 750 F.3d at
1353). Yet, the CAFC cited to its opinions in Atari Games ten times as the most relevant
“Ninth Circuit” precedents. It cited the Apple v. Microsoft decision only once for a minor
point, even though that decision is the Ninth Circuit’s principal software copyright
decision. The Ninth Circuit has cited the Atari Games decision only twice in passing in the
last decade in the Westlaw database, whereas it has cited Apple v. Microsoft eighty-one
times.
 289. See Connectix, 203 F.3d at 599, 609 (noting lack of full compatibility), 602–03,
607 (Sony interface held to be § 102(b) procedure); see also Google Appellee Brief, supra
note 212, at 37 (noting that Connectix had used 137 of 242 elements of the Sony
PlayStation interface).
 290. Samuelson, Baker v. Selden, supra note 155, at 164.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1267

packages.291 Even if avoiding fragmentation of Java was a commercial and
competitive objective for Oracle, that consideration has no bearing on
whether the Java API packages were unprotectable under § 102(b).

Until the Oracle decision, the law was settled that program interfaces
necessary to achieving interoperability among programs or with hardware
were unprotectable by copyright law because of their inherent functionality.
The Oracle decision incorrectly interpreted Ninth Circuit precedents,
including the significance of § 102(b) in cases involving program APIs.
Healthy competition and innovation in the software industry has depended
for decades on the ability of second comers to build new programs that
interoperate with older ones, even when the initial developer of the API at
issue has not consented to this use.

IV. FUNCTIONALITY AND EXPRESSION SOMETIMES
MERGE IN SOFTWARE CASES

Copyright law has long recognized that when there is only one or a small
number of ways to express an idea or function, copyright protection will be
withheld to any expression that has merged with the idea or function.292
Software APIs necessary for achieving interoperability are among the
computer program innovations in which function and expression effectively
merge. APIs specify a system of rules and procedures to which other
programs must strictly conform in order to attain compatibility with an
existing program. The fact that software engineers might ex ante have had
numerous choices in how to design an API does not make the API
copyrightable because that API significantly constrains design choices of
subsequent programmers.

Section A discusses the origins and scope of copyright’s merger
doctrine. Section B considers the role of the merger doctrine in architectural
work and software cases. Section C reviews software copyright cases in
which a first programmer’s design choices constrained the design choices
of subsequent programmers, particularly when reuse of an API is necessary
to achieving interoperability. Section D recognizes that on some occasions,
function and expression may merge as to program code. Section E identifies
several errors in the CAFC’s interpretation of the merger doctrine in its
Oracle decision.

 291. It is common for technologists to tinker with existing technologies and adapt them
to different uses than their manufacturers intended. Considerable innovation has occurred
from these adaptations. See generally ERIC VON HIPPEL, DEMOCRATIZING INNOVATION
(2005).
 292. See infra text accompanying notes 293–301; see also Pamela Samuelson,
Reconceptualizing Copyright’s Merger Doctrine, 63 J. COP. SOC’Y U.S.A. 417, 417 (2016).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1268 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

A. ORIGINS OF THE MERGER DOCTRINE

The challenge of distinguishing expression and functionality in
copyrighted works has been with U.S. copyright law for a very long time.
The Supreme Court first addressed the issue in Baker when holding that
Selden’s copyright extended to his explanation of his bookkeeping system,
not to the bookkeeping system itself.293 The Court characterized Selden’s
forms as “necessary incidents” to this useful art, and since practicing that
system required use of Selden’s forms, the forms were uncopyrightable as
well.294

Courts and commentators often point to the “necessary incidents”
language when speaking of Baker as having originated copyright’s merger
doctrine.295 The selection and arrangement of columns and headings in
Selden’s forms had, in this conception of Baker, in effect, merged with the
system and the method of operation that Selden anticipated accountants
would carry out when using the forms.296

 293. 101 U.S. 99, 101 (1879). Baker is best understood as holding that systems,
methods of operation, and other useful arts are excluded from the scope of copyright
protection, a doctrine that is now codified in § 102(b). See Samuelson, Why Copyright
Excludes Systems, supra note 124, at 1931–42 (explaining Baker and its progeny on this
point). Contrary to common perception, Baker is not the source, or even as a classic
statement, of the idea/expression distinction, although many courts characterize in this
way. See id. at 1924–36 (explaining that the exclusion of ideas from the scope of copyright
predated Baker and was not at issue in that case).
 294. Baker, 101 U.S. at 103. The Nimmer treatise has asserted that Baker’s forms did
not infringe because they differed in some respects from the Selden forms. NIMMER ON
COPYRIGHT, supra note 10, at § 2.18[B][1]. The relevant forms can be found in Samuelson,
Baker v. Selden, supra note 155, at 170–71. The logic of the Court’s decision, however,
supports the view that exact copying of the forms would not infringe. See, e.g., BENJAMIN
KAPLAN, AN UNHURRIED VIEW OF COPYRIGHT 63–64 (1966); HORACE G. BALL, THE LAW
OF COPYRIGHT AND LITERARY PROPERTY 111–12, 125–28 (1944) (discussing Baker and
its progeny as precedents for the unprotectability of systems of business, plans of
instruction, or methods of practicing an art or playing a game); ARTHUR W. WEIL,
AMERICAN COPYRIGHT LAW 193–94 (1917) (citing Baker and its progeny as precluding
copyright protection for plans, methods, and arts).
 295. Among the many cases that cite to Baker as the origin of the merger doctrine is
Arica Inst. v. Palmer, 970 F.2d 1067, 1076 (2d Cir. 1992).The Nimmer treatise is among
the many sources that so credit Baker. NIMMER ON COPYRIGHT, supra note 10, at §2.18. I
have elsewhere argued that Baker did not, in fact, give birth to the merger doctrine, but
rather to the exclusion of procedures, processes, systems, and methods of operation now
codified in § 102(b). See Samuelson, Reconceptualizing Merger, supra note 292, at 419–
22. In numerous cases, merger and § 102(b) defenses have been treated interchangeably.
See id. at 451–53.
 296. See, e.g., Burk, supra note 206, at 591 (Selden’s “accounting forms were the only
way to express the accounting system [so] that the idea and expression had merged.”).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1269

After Baker, courts in the U.S. have mainly struggled with the problem
of the separability or merger of functionality and expression when deciding
whether pictorial, graphic, or sculptural (PGS) works are protectable by
copyright law.297 The 1976 Act allows PGS works to be copyrighted insofar
as they embody original expression that “merely [] portray[s] the
appearance of [an] article or [] convey[s] information.”298 If such works
have “an intrinsic utilitarian function” that goes beyond portraying an
appearance or conveying information, they are disqualified from U.S.
copyright protection.299 If the design of a PGS work “incorporates pictorial,
graphic, or sculptural features that can be identified separately from and are
capable of existing independently of, the utilitarian aspects,” then the work
is copyrightable.300 If functionality and expression are inseparable (i.e.,
merged), then no matter how creative its design, the PGS work is
unprotectable by copyright law.301

Mazer v. Stein is a classic copyright case in which expression and
functionality were separable.302 Stein’s statuette of a Balinese dancer was
eligible for copyright protection because the statuette was a work of art that
existed independently from the lamp.303 It did not matter that the statuette
was being commercially exploited as the base for Stein’s lamps because the
lamp did not function any better or worse for having the statuette as its base.
Jewelry, fabric designs, and dolls are among the other types of intellectual
creations that, having satisfied the separability criterion, enjoy copyright
protection.304

The overall design of a chair or automobile, by contrast, may well have
an aesthetic character, but any expressive aspects of these creations cannot
be separated from (that is, they are merged with) their utilitarian
functions.305 The merger of functionality and expression in chairs,

 297. See, e.g., Kieselstein-Cord v. Accessories by Pearl, Inc., 632 F.2d 989 (2d Cir.
1980) (separable expression in belt jewelry); Carol Barnhart Inc. v. Economy Cover Corp.,
773 F.2d 411 (2d Cir. 1985) (no separable expression in mannequin).
 298. 17 U.S.C. § 101 (definition of “useful article”).
 299. Id. (definition of “useful article”).
 300. Id. (definition of PGS works).
 301. See, e.g., Burk, supra note 206, at 591 (characterizing the useful article/PGS rule
as a kind of merger doctrine).
 302. 347 U.S. 201 (1954).
 303. See id. at 215–18.
 304. See, e.g., Kieselstein-Cord v. Accessories by Pearl, Inc., 632 F.2d 989, 993 (2d
Cir. 1980) (finding that the conceptually separable artistic elements of belt buckles are
copyrightable).
 305. See H.R. REP. NO. 94-1476, at 55 (1976) (giving numerous examples of designs
of useful articles which, even if original, are unprotectable under U.S. copyright law).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1270 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

automobiles, and other useful articles results in no copyright protection
whatsoever in the U.S.306 Moreover, to ensure that copyrights in technical
drawings or depictions of functional creations do not indirectly undermine
the no-copyright-for-functionality rule, the 1976 Act and case law clarify
that any copyright in the drawing does not extend protection to the technical
content or functional creations depicted therein.307

B. THE ROLE OF THE MERGER DOCTRINE IN ARCHITECTURAL WORK

AND SOFTWARE CASES

Congress has created two limited exceptions to the no-copyright-for-
functional-creations rule: one for computer programs and another for
architectural works.308 By designating programs and architecture as
copyrightable subject matters, Congress did not jettison the longstanding
rule that copyright does not protect functionality. Instead, it shifted the
problem of assessing whether expression and functionality are separable or
merged so that the question is, generally speaking, no longer about
eligibility for copyright protection,309 but rather about assessing the proper
scope of protection for such works.

The courts have explicitly recognized the relevance of the merger
doctrine as a limit on the scope of copyright protection for functional design
elements of architectural works. In Zalewski v. Cicero Builder Dev., Inc.,
for example, the Second Circuit recognized that efficiency considerations
may significantly constrain the design of buildings, as well as computer
programs, and adapted the filtration factors first articulated in Altai to apply

 306. See, e.g., Brandir Int’l, Inc. v. Cascade Pacific Lumber Co., 834 F.2d 1142, 1147
(2d Cir. 1987) (ribbon design for bicycle rack held unprotectable by copyright law as useful
article lacking separable expression).
 307. 17 U.S.C. § 113(b); see, e.g., Niemi v. American Axle Mfg., No. 05-74210, 2006
WL 2077590 (E.D. Mich. July 24, 2006) (unauthorized manufacture of machine did not
infringe copyright in drawing); Eliya, Inc. v. Kohl’s Dept. Stores, 82 U.S.P.Q.2d 1088
(S.D.N.Y. 2006) (manufacture of shoe did not infringe copyright in drawing); Fulmer v.
United States, 103 F. Supp. 1021, 1022 (Ct. Cl. 1952) (copyright in drawing of parachute
design did not give its author an exclusive right to make parachutes like that depicted in
the drawing).
 308. See supra note 2 (discussing the Congressional decision to extend copyright
protection to programs). Congress added architectural works to copyright subject matter in
1990. Copyright Improvements Act of 1990, Pub. L. No. 101-650, Tit. VII, 104 Stat. 5133
(codified in various sections of 17 U.S.C.). Copyright Office regulations state that
structures, such as “bridges, cloverleafs, dams, walkways, tents, recreational vehicles,
mobile homes and boats,” are ineligible for copyright protection. 37 C.F.R. § 202.11(d).
Functionality predominates over aesthetics in the design of these structures.
 309. On rare occasions, merger of function and expression may preclude copyright
protection for some program code. See infra notes 318–319 and accompanying text.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1271

in architectural work cases.310 To the extent that “design elements [are]
attributable to building codes, topography, structures that already exist on
the construction site, or engineering necessity[, they] should therefore get
no protection.”311 The court observed that methods of construction and good
engineering practices were likewise unprotectable by copyright.312 It further
noted that “functional aspects of a work are governed by patent law, not
copyright law.”313 Zalewski’s infringement claim failed because “[t]here
are only so many ways to arrange four bedrooms upstairs and a kitchen,
dining room, living room, and study downstairs” for colonial style
homes.314

Copyright protection in an architectural work extends to the aesthetic
design of a building’s exterior and interior, but not to utilitarian features
such as the layout of electrical, heating, or plumbing infrastructures.315
There may, ex ante, be many different ways to design the wiring, heating or
plumbing systems in a building, but no court would be confused into
thinking that a particular layout was protectable expression in the
copyrighted building. Those systems lie outside the scope of copyright in
any drawing of the building or in the building itself, no matter how much
creative effort went into the designs for these systems and no matter how
many design choices the architect might have had at the outset. These are
functional elements of the architectural design because any creativity in the
layout of wires, heating, or plumbing systems is too interconnected with
functionality to be part of the expression of copyrighted building.316

It would be a doctrinal advance in copyright law if courts articulated a
function/expression merger doctrine, as such, in computer program cases.317

 310. Zalewski v. Cicero Builder Dev., Inc., 754 F.3d 95, 105 (2d Cir. 2014) (citing and
quoting from Altai).
 311. Id.
 312. Id. at 105–06.
 313. Id. at 106 n.19.
 314. Id. at 107. Note that the court did not invalidate Zalewski’s copyright, but
regarded the scope of that copyright as sufficiently thin that Cicero did not infringe. Id. at
106.
 315. See, e.g., COPYRIGHT CLAIMS IN ARCHITECTURAL WORKS, COPYRIGHT OFFICE
CIRCULAR 41, at 1–2 (The scope of copyright in copyrighted buildings does not extend to
standard configurations of spaces and individual elements such as doors and windows, or
“functional elements whose design or placement is dictated by utilitarian concerns.”).
 316. The existence of alternative ways to achieve the same functionality is routinely
disclosed in utility patents which differentiate the claimed invention from the prior art. See
infra notes 335–37 and accompanying text.
 317. Some courts speak of a process/expression distinction in computer program cases.
See, e.g., Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823, 836–37 (10th Cir. 1993).
This implicitly lays the groundwork for recognition of a process/expression merger doctrine.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1272 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

The Altai decision came close to doing this when the Second Circuit
asserted that the merger doctrine precluded copyright protection for
efficient design elements of programs.318 A computer program
function/expression merger doctrine could supplement the
function/expression merger rule that disqualifies many aesthetic designs of
articles of manufacture from copyright protection.319 It would also
complement the fact/expression merger doctrine recognized in recent
cases.320 Merger of ideas and expressions is, as it happens, just one type of
merger that courts should (and do) recognize.321

Given that programs are utilitarian works that courts often say should
enjoy only a thin scope of copyright protection,322 it is curious that courts
have rarely articulated or applied a function/expression merger doctrine, as
such, in software infringement cases. Courts’ reluctance to do this may stem
from the misleading nature of the literary work metaphor that so often
pervades copyright discourse about computer programs.323 This metaphor
obscures the deeply functional nature of programs, which have a higher
quantum of utilitarian elements as compared with conventional literary
works such as novels and plays. While it may sometimes be difficult to
distinguish the ideas and the expressions in conventional literary works,
there is generally no need to try to separate literary expressions in these
works from functionalities because they generally have none.324

See also Mitek Holdings, Inc. v. Arce Eng’g Co., 89 F.3d 1568, 1556 n.19 (11th Cir. 1996);
Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 839–40 (Fed. Cir. 1992)
(recognizing the possibility of process/expression merger).
 318. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 707–09 (2d Cir. 1992).
 319. See supra text accompanying notes 298–307. While usually called the separability
doctrine, it effectively is a merger doctrine because the opposite of separable is merged.
 320. See, e.g., N.Y. Mercantile Exch., Inc. v. Intercontinental Exchange, Inc., 497 F.3d
109, 116–19 (2d Cir. 2007) (NYMEX’s creation of settlement prices for futures contracts
treated as fact/expression merger); Banxcorp. v. Costco Wholesale Corp., 978 F. Supp. 2d
280, 308 (S.D.N.Y. 2013) (merger doctrine precludes copyright protection of interest rate
averages, even though some variation in expression of this fact is possible); see also Veeck
v. Southern Building Code Congress Int’l, Inc., 293 F.3d 791, 800–02 (5th Cir. 2002)
(holding that enacted building codes were unprotectable facts under the merger doctrine).
Shubha Ghosh has argued for treating enacted codes as instances of function/expression
merger. See Shubha Ghosh, Legal Code and the Need for a Broader Functionality Doctrine
in Copyright, 50 J. COP. SOC’Y 71, 104–08 (2003).
 321. See Samuelson, Reconceptualizing Merger, supra note 292, at 438–42.
 322. Apple Computer Inc. v. Microsoft Corp., 35 F.3d 1435, 1444 (9th Cir. 1994);
Altai, 982 F.2d at 712; Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1524 (9th Cir.
1992).
 323. See, e.g., Weinreb, supra note 10, at 1167–70.
 324. An example of a literary work with separable functionalities is Red Sparrow
(2013) by Jason Matthews, a spy novel with recipes at the end of each chapter; the book’s

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1273

Computer programs, by contrast, are virtual machines, “machines . . .
that have been constructed in the medium of text.”325 This characterization
of programs is not just a metaphor; this is what programs actually are.
Characterizing them as “literary works” is not wrong, given the capacious
statutory definition of that term,326 but it is seriously incomplete because it
obscures the deeply functional nature of programs and program designs, and
ignores the functional behavior that motivates people to purchase them.

Programs are products of an industrial design process.327 “[C]reating a
program is a process of building and assembling functional elements.”328
Unlike physical machines that are constructed from gears, wires, screws,
and other hardware components, “programs are built from information
structures, such as algorithms and data structures.”329 They are industrial
compilations of applied know-how.330

Neither copyright nor patent law has conventionally extended protection
to these kinds of innovations,331 although industrial compilations of applied
know-how may be and often are protected as trade secrets. Indeed, internal
design elements of programs are most often and best protected as secrets,
making both copyright and patent protection less needed for nonliteral
elements of software. While industrial design elements of programs can and
sometimes are reverse-engineered, reverse-engineering of program code
does not generally enable the engineer to engage in market-destructive
appropriations of program know-how because this method of discovery of
program internals is difficult, expensive, and time-consuming.332

Command structures and APIs, along with program behavior, are
industrial compilations of applied know-how that often cannot be kept
secret.333 Command structures may be visible when users run the program,
as in Borland, or they may be published, as were the API packages in
Oracle. But that does not change their essential nature. Functionality and
expression are so tightly coupled (i.e., merged) in command structures and
APIs that they should lie outside the scope of copyright protection in

copyright would not extend to the recipes. See Publications Int’l Ltd. v. Meredith Corp.,
88 F.3d 473, 480–81 (7th Cir. 1996) (finding recipes in cookbook not entitled to copyright
protection).
 325. Samuelson et al., Manifesto, supra note 10, at 2316; see also id. at 2316–32
(discussing the nature of programs and their designs).
 326. 17 U.S.C. § 101 (definition of “literary works”).
 327. Samuelson et al., Manifesto, supra note 10, at 2329–30.
 328. Id. at 2321.
 329. Id.
 330. Id. at 2326–32.
 331. Id. at 2342–56.
 332. Id. at 2389–93.
 333. Id. at 2356–64.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1274 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

programs. After all, command structures and APIs are carefully engineered
to identify the functions of which programs are capable and the manner in
which information must be configured to be exchanged across program
boundaries so that programs are able to function properly. As the Borland
and Sega decisions, among others, demonstrate, programmers can generally
develop independent implementations of methods, procedures, and
processes, such as APIs and command structures, without infringing
copyrights. The CAFC failed to recognize this in Oracle.

Oracle is among the many plaintiffs in software copyright cases that
have characterized computer programs as literary works and insisted that
merger is relevant only when the plaintiff had no design alternatives, as the
Third Circuit said in Whelan and the CAFC in Oracle.334 This approach is
unduly restrictive of programmer reuses of functional designs that could
contribute to ongoing competition and follow-on innovation in the software
industry. Other courts have recognized that there may be more than one
method or system that can accomplish a program task, and patents often
make reference to prior art that performed the same function in a different
way.335 To be consistent with Supreme Court decisions in other IP cases,
the existence of alternative ways to perform a function should not be the
sole criterion for whether to treat that type of nonliteral element of a
program as expressive, as it was in the CAFC’s Oracle decision.336 Also
relevant are purpose, cost, and use characteristics of the creation.337 This is
especially true for interfaces necessary for interoperability.

 334. See supra text accompanying notes 28, 65.
 335. See, e.g., Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1546, n.29 (11th Cir. 1996)
(“The availability of alternatives should not be determinative in distinguishing elements of
a computer program that are expression and those that are unprotectable under 102(b).
Generally, there is more than one method of operation or process that can be used to
perform a particular computer program function Patents routinely recite prior methods
or systems of performing the same function in distinguishing the claimed invention from
the prior art.”); see also Bikram’s Yoga Coll. of India, L.P. v. Evolation Yoga, LLC, 803
F.3d 1032, 1042 (9th Cir. 2015) (“[T]he possibility of attaining a particular end through
multiple different methods does not render the uncopyrightable [yoga sequences] a proper
subject of copyright.”).
 336. The existence of design alternatives may similarly be a factor in deciding whether
a design is too functional to be protected as trade dress, but the Supreme Court has rejected
this as a sole criterion for judging the nonfunctionality of trade dress in TrafFix Devices,
Inc. v. Marketing Display Inc. See 532 U.S. 23, 27–32 (2001). The implications of TrafFix
for software copyright cases are discussed infra text accompanying notes 424–427. See
also Weinreb, supra note 10, at 1170 (“[I]f this rubric [of other possible design choices] is
used, copyright effectively absorbs the whole of patent.”).
 337. See, e.g., TrafFix, 532 U.S. at 31–33; Kellogg Co. v. Nat’l Biscuit Co., 305 U.S.
111, 122 (1938) (rejecting claim of trademark in pillow shape of Shredded Wheat biscuits,

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1275

C. MERGER MAY BE FOUND WHEN A PLAINTIFF’S DESIGN CHOICES

SERVE AS CONSTRAINTS ON THE CHOICES AVAILABLE TO SECOND

COMERS

Baker teaches that expression and functionality are sometimes too
closely intermixed in some textual works for copyright protection to be
available to those elements. When Selden first devised the bookkeeping
system embodied in his book, there were other ways to keep books for
various accounts, but he was dissatisfied with them. In designing forms for
his new system, he wasn’t completely free to arrange columns and headings
as he wished because state law required all bookkeeping forms to have
columns captioned “date,” “no.”, “to,” “for,” and “by.”338 Selden’s forms
complied with this mandate in the five farthest left-hand columns. But he
was not constrained in other design decisions for arranging columns and
headings in the forms.

Selden believed the selection and arrangement of columns and headings
in the new forms was highly creative, as the preface to his book revealed:
“To greatly simplify the accounts of extensive establishments doing credit
business, and embracing an almost infinite variety of transactions would be
a masterly achievement, worthy to be classed among the greatest
benefactions of the age.”339 So even though Selden could easily meet a
creativity-based originality standard, his forms were nonetheless
unprotectable by copyright law because the selection and arrangement of
the columns and headings were “necessary incidents” to the system he
devised.340

This aspect of Baker demonstrates that the merger doctrine may apply
even when the copyright claimant had other choices when first developing
a creative procedure, process, system, or method of operation. Selden’s
copyright was, of course, valid, but it provided protection only to his
explanation of the system, not to the system and the forms that instantiated
it. Unlike most useful arts, which are embodied in metal or other materials,
Selden’s useful art was embodied in a book (or in today’s parlance, a literary
work). But the Court said in Baker: “[T]he principle is the same in all. The
description of the [useful] art in a book, though entitled to the benefit of

despite existence of design alternatives, because “[t]he evidence is persuasive that this form
is functional—that the cost of the biscuit would be increased and its high quality lessened
if some other form was substituted for the pillow-shape”).
 338. Samuelson, Baker v. Selden, supra note 155, at 168.
 339. Id. at 160 (quoting from the Supreme Court record).
 340. Baker v. Selden, 101 U.S. 99, 103 (1879).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1276 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

copyright, lays no foundation for an exclusive claim to the art itself.”341 The
creativity required to develop the system and to devise forms to implement
it did not make the system or the forms copyrightable because of the merger
of function and expression. By not protecting Selden’s system and the forms
embodying it, there was breathing room for later bookkeepers to continue
to evolve the useful art of bookkeeping and devise new forms that further
improved upon Selden’s innovation, as Baker himself did.342

Courts have followed Baker’s admonitions in many subsequent non-
software cases.343 The pertinence of Baker for assessing the scope of
copyright in software was importantly acknowledged in Altai. Altai directly
invoked Baker and the merger doctrine in explaining why efficient
functional design elements of programs lie outside of the scope of copyright
protection available to programmers.344 The Second Circuit observed that
“[i]n the context of computer program design, the concept of efficiency is
akin to deriving the most concise logical proof or formulating the most
succinct mathematical computation.”345 The more efficient a nonliteral
element of a program is, the closer it approximates a merger of idea and
expression. The court recognized that “hypothetically, there might be a
myriad of ways in which the programmer may effectuate certain functions
within a program . . . [but] efficiency considerations may so narrow the
practical range of choice as to make only one or two forms of expression
workable options.”346

The court in Altai was implicitly concerned that the first software
developer to devise an efficient functional design for a program should not
be able to get 95 years of protection for it and force all other programmers
to adopt less efficient solutions. It recognized that “[e]fficiency is an
industry-wide goal” for software developers.347 Altai directed that efficient
design elements of programs be filtered out of consideration before doing
the final step in infringement analysis, even though other design choices
might have been available.

Elements of programs that are “dictated by external factors” must also
be filtered out.348 The Second Circuit in Altai identified several types of

 341. Id. at 105 (emphasis added).
 342. See Samuelson, Baker v. Selden, supra note 155, at 193; see also id. at 169 n.76.
 343. See Samuelson, Why Copyright Excludes Systems, supra note 124, at 1936–44
(discussing the cases that followed Baker).
 344. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 707–08 (2d Cir. 1992).
 345. Id. at 708.
 346. Id.
 347. Id.
 348. Id. at 710.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1277

constraints that might limit the design choices of programmers, including
“compatibility requirements of other programs with which a program is
designed to operate in conjunction.”349 Although the court referred to the
scenes a faire doctrine as a justification for treating compatibility as an
external constraint on programmer design decisions,350 to the extent it used
“dictated by” language,351 the more pertinent doctrine is merger. Altai and
its progeny regard compatibility as an external factor constraint on design
decisions of defendants who are developing programs to interoperate with
existing software and hardware.

The CAFC’s Oracle decision interpreted this external factors
constraints category too narrowly. That court considered Altai to have
directed the filtration of elements dictated by external constraints only
insofar as the constraints limited the plaintiff’s design choices.352 Having
determined that Sun’s engineers were not constrained in designing the Java
API packages, the CAFC regarded Google’s external constraints argument
to be unpersuasive.353 However, the Second Circuit did not so limit the
external constraints category in Altai, and in the twenty-three years since

 349. Id. at 709–10.
 350. See id. The scenes a faire doctrine is similar to merger in limiting the scope of
copyright protection, but it is more focused on whether elements in a protected work are
common in works of that kind, not whether they are “dictated” by functional
considerations, as merger is in software cases.
 351. See id.
 352. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1370 (Fed. Cir. 2014). The CAFC
cited Dun & Bradstreet Software Servs., Inc. v. Grace Consulting, Inc., 307 F.3d 197, 215
(3d Cir. 2002), in support of this interpretation of Altai. But in Grace, the Court of Appeals
for the Third Circuit considered defendant Grace to be a very bad actor who breached
license agreements, copied and modified D&B software, and misappropriated its trade
secrets. See Grace, 307 F.3d 197. In this context, the Third Circuit’s rejection of the
defendant’s claim that its design choices were constrained by what D&B had done should
be given little weight.
 353. See Oracle, 750 F.3d at 1370–71. The CAFC fell back on a Whelan-like “is there
any other way to do it?” approach to assessing whether the Java API packages were
expressive. Id. But the CAFC was mistaken on this point. Joshua Bloch, one of the Sun
engineers involved in designing the Java API, reports that considerable effort went into
developing the Java API to faithfully reimplement the syntax and semantics of Perl so that
Perl-trained engineers could more easily work in Java. Sun ran a battery of 30,000 tests to
ensure that the Java implementation was consistent with Perl’s. Bloch states that the “Java
APIs included many preexisting APIs and have since the earliest days of the platform.
Many of the original Java APIs were pretty much copied from C to make it easy for C
programmers to make the transition.” Communication with Joshua Bloch, Sept. 28, 2015
(on file with author).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1278 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

Altai, numerous cases have treated external constraints as affecting the
defendant’s as well as the plaintiff’s design choices.354

Anyone who develops an API for achieving program interoperability is,
in effect, creating a constraint on his own subsequent design decisions. At
the same time, though, that same API developer is also creating constraints
on the design choices of all others who want to develop programs to
interoperate with his platform, as the Ninth Circuit implicitly recognized in
Sega.355 When Sega initially developed the interface for its Genesis
platform, it had many choices about how to construct that interface. But
once that interface existed, Sega and its licensees had to conform to it when
they made games for the Genesis. Accolade similarly could not make its
videogames run on the Genesis platform without reimplementing the Sega
interface in its program. That interface constituted the “functional
requirements for achieving compatibility.”356 Although the Ninth Circuit
characterized “interface procedures” of the Sega program as unprotectable
under § 102(b), merger would have been a reasonable alternative ground.357
Any arguably expressive elements in the Sega interface would be merged
with its functionality because third party software cannot execute on the
Sega platform unless the interface components exactly conform to the rules
that Sega established when designing the interface.358

D. SOMETIMES PROGRAM FUNCTIONS MERGE WITH PROGRAM CODE

The interface at issue in Altai was a nonliteral element of a program that
CA alleged Altai infringed. Sometimes, however, literal copying of code is
necessary to achieve interoperability. The Ninth Circuit recognized this in
Sega because it excused Accolade from infringement for copying a segment
of Sega code that was essential to achieving interoperability.359 The

 354. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 709–10 (2d Cir. 1992)
(using “dictated by” twice in discussing filtration of external factors). Sega and Borland
are among the decisions in which the defendant’s design choices were constrained by the
plaintiff’s earlier choices. See also Samuelson, Reconceptualizing Merger, supra note 292,
at 442–44.
 355. See Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992).
 356. See id. at 1522.
 357. Id. Note that the “functional requirements for . . . compatibility” phrase uses the
language of merger. See also id. at 1524 (recognizing that “necessary incidents”
components of programs are unprotectable, as are program elements “dictated by the
function to be performed”).
 358. Connectix faced similar constraints when reimplementing the Sony PlayStation
interface for its emulation software. See Sony Comput. Entm’t, Inc. v. Connectix Corp.,
203 F.3d 596, 602–07 (9th Cir. 2000).
 359. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1524, 1530–32 (9th Cir.
1992); see also Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 995 (N.D. Cal. 2012)

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1279

Eleventh Circuit in Bateman acknowledged this when ruling that a lower
court erred in instructing a jury that only nonliteral elements of a program
interface needed for achieving compatibility could be filtered out in
applying the AFC test, thus recognizing that sometimes exact copying is
truly essential to interoperability.360 The Sixth Circuit in Lexmark likewise
struck down a lower court ruling of infringement because exact copying of
a short Lexmark program installed in that firm’s printer cartridges was a
necessary incident to interoperation with the Lexmark printer.361 The Sixth
Circuit expressly relied on merger as the basis for ruling that Lexmark’s
printer code was ineligible for copyright protection because it was needed
to achieve interoperability.362

Read together, the Altai, Sega, Connectix, Bateman, and Lexmark
decisions not only recognize, but directly hold, that there is a compatibility
exception to copyright protection for computer programs when reuse of
interface components are necessary for interoperability.363 This is true
whether the interface is embodied in a program or merely specified in a
document that is not itself a program. The distinction between APIs and
implementations of APIs in independently written code is fundamental in
the field of computing.364 Copyright law protects the code that implements
an API, but does not protect the API insofar as it is necessary to enabling

(quoting Sega, 977 F.2d at 1524 n.7, as excusing exact copying of a short portion of the
Sega code because of its functionality).
 360. 79 F.3d 1532, 1546–47 (11th Cir. 1996).
 361. Lexmark Int’l, Inc. v. Static Control Components, 387 F.3d 522, 542 (6th Cir.
2004) (“[I]f any single byte of the Toner Loading Program is altered, the printer will not
function”).
 362. Id.
 363. The court in Bateman was unwilling to rule that all APIs were unprotectable as a
matter of law, but it directed the lower court to instruct the jury that insofar as program
code or APIs were necessary to interoperability, they were not within the scope of
protection available to programs. 79 F.3d 1532, 1546–57 (11th Cir. 1996). The
interpretation of Borland discussed above would also support a compatibility exception.
See supra Section III.B; see also Burk, supra note 206, at 591 (suggesting that Borland
should have been decided on merger of functionality and expression grounds). In Oracle,
the CAFC distinguished Sega and Connectix by saying that they were fair use cases and
that compatibility considerations might be relevant to fair use defenses. Oracle Am., Inc.
v. Google Inc., 750 F.3d 1339, 1368–71 (Fed. Cir. 2014). However, the Ninth Circuit
plainly stated in both cases that interface procedures necessary for interoperability are
unprotectable elements of copyrighted programs under § 102(b).
 364. See, e.g., Alfred Z. Spector, Software, Interface and Implementation, 30 JURIM. J.
79, 85–87, 90 (1989) (discussing distinction between interfaces and implementations).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1280 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

interoperability. Congress has, moreover, indirectly ratified these court
holdings that allow reuse of interfaces necessary for compatibility.365

Java method headers (or declarations, as they are sometimes called) are
not lines of code in the sense of executable program instructions.366 They
are specifications designed to invoke particular program functions. The
method headers must be implemented in program instructions that when
compiled, will become executable code. In this respect, the method headers
are nonliteral elements of programs, which Google reimplemented in
independently written code. The functionality of those method headers is
inextricably interconnected with any expression they might be said to
contain. The rules of Java, as the District Court noted, constrained Google’s
design choices as to names of Java methods and classes and as to the
structure of the API command structure.367 The merger doctrine was a
suitable alternative justification for the holding that the Java APIs at issue
in Oracle are unprotectable by copyright law, as the District Court held.368

E. THE CAFC ERRED IN INTERPRETING THE MERGER DOCTRINE

The CAFC misinterpreted the merger doctrine in several respects. For
one thing, it rejected outright the idea that merger can be a
“copyrightability” issue.369 However, merger was in fact treated as a
copyrightability issue in Baker,370 as well as in numerous other cases.371

 365. Congress created an exception to rules that forbid bypassing technical protection
measures to authorize programmers to reverse engineer technically protected programs to
get access to interface information necessary for interoperability. 17 U.S.C. § 1201(f).
 366. See, e.g., Mike Masnick, Yes, The Appeals Court Basically Got Everything Wrong
in Deciding APIs Are Covered by Copyright, TECHDIRT (Aug. 18, 2015), https://
www.techdirt.com/articles/20150817/11362131983/yes-appeals-court-got-basically-every
thing-wrong-deciding-apis-are-covered-copyright.shtml [https://perma.cc/9VY6-RN9V]
(criticizing the CAFC Oracle decision for not understanding what an API is).
 367. Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 979 (N.D. Cal. 2012)
(“[S]ince there is only one way to declare a given method functionality, everyone using
that function must write that specific line of code in the same way”).
 368. Id. at 997.
 369. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1354–62 (Fed. Cir. 2014).
 370. Baker v. Selden, 101 U.S. 99, 103 (1879) (Selden’s forms held unprotectable by
copyright law as “necessary incidents” to the bookkeeping system).
 371. See, e.g., Ho v. Taflove, 648 F.3d 489, 497 (7th Cir. 2011) (equation not
copyrightable); ATC Distrib. Group, Inc. v. Whatever It Takes Transmission & Parts, Inc.,
402 F.3d 700, 707–08 (6th Cir. 2005) (parts numbering system not copyrightable);
Lexmark Int’l, Inc. v. Static Control Components, 387 F.3d 522, 534–42 (6th Cir. 2004)
(printer program not copyrightable); Warren Publ’g Inc. v. Microdos Data Corp., 115 F.3d
1509, 1518 n.27 (11th Cir. 1997) (systematic compilation not copyrightable); Kern River
Gas Co. v. Coastal Corp., 899 F.2d 1458, 1463–65 (5th Cir. 1990) (route of gas line not
copyrightable). The Copyright Office also recognizes that merger can present a

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1281

Second, the CAFC erred in saying that merger can only be found when,
ex ante, there is just one way to express an idea or function and any
creativity in the design of an API makes it protectable by copyright law.372
Other courts, Altai among them, have recognized that there sometimes is,
ex ante, more than one or a few ways to design nonliteral elements of
computer programs, but efficiency considerations may narrow the range of
options, so that merger applies.373 The CAFC did not consider whether
efficiency considerations might have limited options as to the design of the
Java API method headers. Numerous cases have taken other factors into
account when assessing merger defenses, such as whether the claimed
expression was the most logical and useful way to do something, whether
practical considerations or functionality limited options, and whether
particular designs were necessary to achieving objectives.374

The CAFC in Oracle conjectured that merger might apply to three
“core” Java API packages that were necessary to make use of the Java
language, which all agreed Google was free to use.375 The design of those
core packages was probably no more constrained, ex ante, than any others
of the API packages. Yet, if the Java language cannot be used at all unless

copyrightability issue. See Compendium, supra note 143, § 313.3(B) (stating Office will
not register claims of copyright when it believes the work consists of merged expression).
The CAFC relied upon Ets-Hokin v. Skyy Spirits, Inc., 225 F.3d 1068 (9th Cir. 2000), to
say that the Ninth Circuit does not recognize merger as a copyrightability issue. See Oracle,
750 F.3d at 1358. While Ets-Hokin did reject the merger defense that the photograph at
issue was uncopyrightable, this was because the photograph had enough originality to
support a copyright. See 225 F.3d at 1077, 1082. The scope of that copyright, however,
was so “thin” that another photograph of the bottle did not infringe. See Ets-Hokin v. Skyy
Spirits, Inc., 323 F.3d 763, 766 (9th Cir. 2003). In Allen v. Academic Games League of
Am., the Ninth Circuit treated merger as a copyrightability issue. See 89 F.3d 614, 617–18
(9th Cir. 1996); see also Samuelson, Reconceptualizing Merger, supra note 292, at 435–38.
 372. Oracle, 750 F.3d at 1359–62.
 373. See supra text accompanying notes 103–106. ATC is an example of a non-
software copyright case recognizing efficiency as a design constraint. See ATC, 402 F.3d
at 709.
 374. See, e.g., id. at 707 (reasonableness as constraint); Rice v. Fox Broad. Co., 330
F.3d 1170, 1177 (9th Cir. 2003) (merger if most logical); Yankee Candle Co. v.
Bridgewater Candle Co., 259 F.3d 25, 35 (1st Cir. 2001) (functional considerations);
Matthew Bender & Co. v. West Publ’g, 158 F.3d 674, 685 (2d Cir. 1998) (feature became
standard); Crume v. Pac. Mut. Life Ins. Co., 140 F.2d 182, 184 (7th Cir. 1944) (alternative
language might not achieve objective); Matthew Bender & Co. v. Kluwer Law Book
Publishers, Inc., 672 F. Supp. 107, 110–11 (S.D.N.Y. 1987) (most logical; practical
considerations).
 375. Oracle, 750 F.3d at 1362. Because of interdependencies among elements of the
Java API packages, reuse of at least ten is necessary to implement the Java language
specification.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1282 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

one conforms to the method headers and classes of those three packages,
merger would be a reasonable doctrine to apply.

Third, the CAFC incorrectly stated that merger can only be found when
the plaintiff (not the defendant) faced constraints in its design decisions.376
But courts often recognize that a defendant’s design choices can be
constrained by what the plaintiff did.377 To compete effectively and to
enable ongoing innovation, a second comer may need to use the same
designs. Even CONTU accepted this proposition: “when specific
instructions, even though previously copyrighted, are the only and essential
means of accomplishing a given task, their later use by another will not
amount to an infringement.”378 This indicates that CONTU accepted that
function and expression might merge over time.

Fourth, the CAFC ignored the District Court’s finding that there was far
less of a distinction between the Java language and the API packages than
Oracle acknowledged.379 Insofar as there is little or no difference between
the Java language—which all agree is not protectable by copyright law—
and the component parts of the API that Google used, this consideration
weighs in favor of finding merger in Oracle.380

The CAFC should also have taken into account the interests of the nine
million Java programmers who have become accustomed to using the Java
command structure when expressing themselves in the Java language.381 If

 376. Id. at 1361.
 377. See, e.g., N.Y. Mercantile Exch., Inc. v. Intercontinental Exchange, Inc., 497 F.3d
109, 116–19 (2d Cir. 2007); ATC, 402 F.3d at 705–09; Southco, Inc. v. Kanebridge Corp.,
390 F.3d 276, 282 (3d Cir. 2004); Lexmark Int’l, Inc. v. Static Control Components, 387
F.3d 522, 536–42 (6th Cir. 2004); see also Samuelson, Reconceptualizing Merger, supra
note 292, at 442–44.
 378. CONTU Report, supra note 2, at 74 (emphasis added).
 379. Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 982 (N.D. Cal. 2012).
 380. The CAFC also failed to recognize that numerous cases have treated merger as
reasonably interchangeable alternatives to § 102(b) defenses. See, e.g., Ho v. Taflove, 648
F.3d 489, 497 (7th Cir. 2011); Warren Publ’g Inc. v. Microdos Data Corp., 115 F.3d 1509,
1518 n.27 (11th Cir. 1997); Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823, 845
(10th Cir. 1993). As in Baker, once an author chooses to create a text embodying an
unprotectable system or method of operation, the expressive choices of follow-on creators
wanting to use the same system or method are constrained.
 381. There is a deep irony in Oracle’s copyright lawsuit against Google. Sun
Microsystems, whose IP assets Oracle acquired in 2010, was once the foremost proponent
of freedom to interoperate, by which it meant there should be no intellectual property
protection for APIs insofar as they were necessary to enable interoperability. Sun’s Deputy
General Counsel Peter M.C. Choy was a lead lawyer on numerous amicus curiae briefs for
the American Committee for Interoperable Systems in software copyright cases, including
Altai, Sega, Bateman, and Borland. These briefs can be found online. See Interoperability
Resources, COMPUTER & COMMUNICATIONS INDUSTRY ASSOCIATION, http://www.ccia

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1283

it was appropriate to take into account the interests of users who constructed
macros in the Lotus 1-2-3 language in denying Lotus’s claim in Borland,
then it should be appropriate to take into account the third party effects of a
ruling in Oracle’s favor on programmers accustomed to using the Java
command structure that Google decided to include in the Android software
and educators who teach them to students. Courts should not be forcing
programmers to engage in needless variation when standardization would
better accomplish the objectives of copyright law by letting programmers
express themselves in the command language they know well.382

net.org/interop/ [https://perma.cc/L5QK-BDXP] (compiling amicus briefs on the inter-
operability issue).
 Consider this excerpt from the ACIS brief to the Supreme Court in support of
Borland, which echoes arguments that Google made in Oracle:

Unlike traditional literary works such as novels and plays that stand
alone and do not need to interact with any other work, computer
programs never function alone; they function only by interacting with
the computer environment in which their developers place them. This
environment is absolutely unforgiving. Unless the computer program
conforms to the precise rules for interacting with the other elements of
the system, no interaction between the program and the system is
possible. As a consequence, no matter how much better or cheaper the
new program is, it will not enjoy a single sale if it cannot interoperate in
its intended environment. If the developer of one part of the environment
can use copyright law to prevent other developers from writing programs
that conform to the system of rules governing interaction within the
environment – interface specifications, in computer parlance – the first
developer could gain a patent-like monopoly over the system without
ever subjecting it to the rigorous scrutiny of a patent examination. Lotus
seeks to use copyright in exactly this manner.

Brief Amici Curiae of American Committee for Interoperable Systems and Computer &
Communications Industry Ass’n in Support of Respondent at 4–5, Lotus Dev. Corp. v.
Borland Int’l Inc., 516 U.S. 233 (1996) (No. 94-2003), 1995 WL 728487. Oracle cannot
perhaps be bound by the legal positions Sun took in those cases, but surely it is fair game
to point out the stark contrast between then and now. After all, Google talked to Sun about
a license, not Oracle. Moreover, Sun’s last CEO testified in support of Google’s defense.
See Bryan Bishop, Former Sun CEO Jonathan Schwartz Testifies for Google in Oracle
Trial, THE VERGE (Apr. 26, 2012), http://www.theverge.com/2012/4/26/2977858/former-
sun-ceo-jonathan-schwartz-testifies-for-google-oracle-trial [https://perma.cc/8F9R-YH25].
 382. See, e.g., Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 818 (1st Cir. 1995),
aff’d by an equally divided Court, 516 U.S. 233 (1996) (stating it would be “absurd” to
require users to have to learn new command structures for programs); Burk, supra note
206, at 592 (In Baker and Borland, protecting the forms and commands “would have been
tantamount to protecting the method or process they embodied. This is the rationale of
merger.”); see also supra text accompanying notes 284–286 concerning the difficulties that
Java programmers would have encountered if Google had attempted to develop different
method headers and classes for a variant version of them for the Android platform.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1284 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

Command structures and APIs are examples of computer program
design elements as to which merger of function and expression may and
often does occur. It is important to competition and ongoing innovation in
the software industry that merged elements such as these are available for
reuse by subsequent programmers, especially given the powerful presence
of network effects.383

V. DIFFERENT CONCEPTUALIZATIONS ON THE
RELATIONSHIP BETWEEN PATENT AND COPYRIGHT
PROTECTIONS FOR SOFTWARE

Courts have sometimes assigned to copyright law the role of protecting
program expression and patent law the role of protecting program processes
or other functionality.384 The Ninth Circuit’s Sega decision, for instance,
stated that Sega could not use copyright law to get exclusive rights in the
interfaces that constituted the functional requirements for achieving
program-to-program compatibility because that kind of protection was
available only from patent law.385 The Second Circuit in Altai suggested
that patents might be more appropriate than copyright for protecting
utilitarian nonliteral elements of programs.386 Such statements draw upon
the Supreme Court’s Baker decision, which channeled useful arts to the

 383. A prominent economist has noted that it is “inefficient to protect the arbitrary
choices whose commercial value is created solely by the network incentives to imitate—
and to protect the useful ideas only indirectly by protecting these ancillary innovations.
Such protection not only seems likely to have adverse consequences on compatibility, but
also protects only indirectly and haphazardly the useful ideas, the costs of whose creation
intellectual-property policy is meant to cover.” Joseph Farrell, Standardization and
Intellectual Property, 30 JURIM. J. 35, 49 (1989).
 384. See, e.g., Mitek Holdings, Inc. v. Arce Eng’g Co., 89 F.3d 1548, 1556 n.19 (11th
Cir. 1996) (copyright protects expression, but not program processes which are the
province of patent law); Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823, 837 (10th

Cir. 1993) (description of program process may be copyrightable, but program process is
patentable); Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 839 (Fed. Cir.
1992) (copyright protects program expression, and patent law protects program processes
and methods). Some commentators have expressed this view as well. See, e.g., Dennis S.
Karjala, The Relative Roles of Patent and Copyright in the Protection of Computer
Programs, 17 J. MARSHALL J. COMP. & INFO. L. 41, 41–42 (1998); Englund, supra note
10, at 893–96.
 385. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1526 (9th Cir. 1992); see also
Apple Computer Inc. v. Microsoft Corp., 35 F.3d 1435, 1443 (9th Cir. 1994) (“Apple
cannot get patent-like protection for the idea of a graphical user interface”).
 386. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1285

patent system and limited the scope of copyright in any work describing or
depicting the useful arts to the plaintiff’s expression.387

The patentability of a process, system or method of operation embodied
or depicted in a copyrighted work should, in keeping with the Supreme
Court’s ruling in Baker, be a factor indicating that that innovation is among
the functional design elements that § 102(b) was meant to exclude from
copyright protection. It would undermine incentives to use the patent
system if innovators could get several times longer duration of IP protection
from copyright law without applying for a patent and subjecting their claims
to examination for novelty and nonobviousness, among other things.388
Making sure that copyright does not indirectly protect technological
innovations that are not, in fact, patented promotes competition and ongoing
innovation in the useful arts.

Unfortunately, the functional and expressive elements of computer
programs cannot be as readily distinguished as Baker and the conventional
paradigms of copyright and patent law posit.389 Functionality pervades
program design, and creative choices abound, so the usual channeling
mechanisms that courts have traditionally applied work less well as applied
to computer programs. Courts should develop more subtle ways to
conceptualize the relative roles of utility patent and copyright in protecting
program innovations than the categorical exclusivity approach that Baker
and its progeny law suggest.390

Although Baker posited that patent and copyright laws protect very
different kinds of innovations, Section A explains why courts have not
always found categorical exclusivity of intellectual property subject matters
to be persuasive and why separating out the roles of patent and copyright in
the protection of software innovations has proven to be difficult. Section B

 387. Baker v. Selden, 101 U.S. 99, 101–03 (1879).
 388. See, e.g., Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 984, 996 (N.D.
Cal. 2012); Karjala, supra note 384, at 44–45.
 389. See, e.g., Reichman, supra note 1, at 2480–81.
 390. Inventors of new and useful machines, manufactures, compositions of matter, and
processes are eligible to apply for utility patent protection. 35 U.S.C. § 101, et seq. If the
patent applicant satisfies the statutory requirements, including articulation of specific
claims that will define the scope of the patent, a utility patent will issue. Utility patents
have a maximum duration of twenty years from the date of filing. 35 U.S.C. § 154(a)(2).
The patentability of computer program innovations has been controversial for decades. See,
e.g., Pamela Samuelson, Benson Revisited: The Case Against Patent Protection for
Algorithms and Other Computer Program-Related Inventions, 39 EMORY L.J. 1025 (1990).
The Supreme Court recently struck down software-related patent claims in Alice Corp. v.
CLS Bank, 573 U.S. ___, 134 S. Ct. 2347 (2014). Patent protection may also be available
to creators of ornamental designs for articles of manufacture. 17 U.S.C. § 171, et seq.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1286 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

explains the flaws in the CAFC’s Oracle decision’s analysis of copyright-
patent boundary issues. Section C offers an alternative framework for
thinking about those boundaries as applied to software innovations. Section
D observes that software developers often rely more on non-IP strategies,
such as first mover advantages and complementary assets, to attain
competitive advantage than on intellectual property protections.

A. REASONS TO BE CAUTIOUS OF CATEGORICAL EXCLUSIVITY

ARGUMENTS ABOUT PATENT AND COPYRIGHT PROTECTIONS FOR

SOFTWARE INNOVATIONS

There are several reasons why it may be risky for defendants in software
copyright cases to argue that a particular nonliteral element of the plaintiff’s
program (which it copied) cannot qualify for copyright protection because
patents have issued for that kind of program innovation.391 For one thing,
Baker notwithstanding, defendant arguments for categorical exclusivity in
intellectual property cases have sometimes proven unpersuasive.392 For
instance, Mazer lost his argument that Stein’s Balinese dancer statuette was
ineligible for copyright protection because Stein could have gotten (but did
not) a design patent on the statuette for use as a lamp base.393 The Court was
untroubled by the existence of this overlap between design patent and
copyright subject matters.394 Stein’s statuette was an ornamental design for
an article of manufacture, but it also qualified as a copyrightable work of
art.395 This explains the Court’s dictum that the potential patentability of

 391. Google’s brief asking the Supreme Court to review the CAFC ruling seemed to
make a categorical exclusivity argument. See Petition for a Writ of Certiorari at 23–32,
Google Inc. v. Oracle Am., Inc., 135 S. Ct. 2887 (2015) (No. 14-410), 2014 WL 5319724.
 392. See J.E.M. Ag Supply, Inc. v. Pioneer Hi-Bred Int’l, Inc., 534 U.S. 124 (2001)
(rejecting argument that novel plants could not be patented because Congress intended for
them to be protected only under the Plant Variety Protection Act).
 393. Mazer v. Stein, 347 U.S. 201, 217 (1954).
 394. See id. at 214–15. The Court cited to precedents recognizing an overlap of design
patent and copyright subject matter. Id. at 215 n.33, 217 n.37. Some of these cases had
required creators to elect between copyright and design patent protection; the Court chose
not to address the election issue. See id.
 395. There is not much overlap of copyright and design patent subject matters because
of copyright’s useful article doctrine which excludes PGS works in which expression and
functionality have merged. See supra notes 297–304 and accompanying text. The
integration of functionality and ornamentality does not disqualify designs from design
patent protection. See, e.g., Robert C. Denicola, Applied Art & Industrial Design: A
Suggested Approach to Copyright in Useful Articles, 67 MINN. L. REV. 707, 707–08 (1982)
(“Design patents long offered the possibility of protection for the ornamental design of a
useful product.”).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1287

that design was irrelevant to whether it was eligible for copyright
protection.396

However, neither the Supreme Court nor any other court has recognized
subject matter overlap between copyright and utility patent laws.397 No
decision has ever held that a creator can get copyright and utility patent
protection for exactly the same aspect of a creation.398 The Baker decision
suggests that subject matter overlap of these two laws does not exist. Yet,
when the Supreme Court was presented with a categorical exclusivity
argument in Borland, it split evenly on the merits despite Borland’s citation
to some utility patents on similar innovations as evidence that they were
patent, not copyright, subject matter.399

A second reason not to put too much weight on the existence (or not) of
utility patent protection for some types of program-related innovations in
judging whether copyrights have been infringed is that patents on some
innovative designs may have issued at a different level of abstraction than
the copyright claim may be alleged to cover.400 The District Court in Oracle
did not, for example, analyze the API patents it mentioned to compare them
to the API command structures in which Oracle claimed copyright.401

Yet, a levels-of-abstraction assessment of the relative roles of patent and
copyright in protecting programs may not be a reliable indicator. After all,
patent lawyers make strategic decisions in drafting patent applications about
the level of abstraction at which to pitch their clients’ claims. There are
significant advantages to claiming inventions at higher levels of abstraction
because if the claim is allowed, it will enable the patentee to enjoy a broader
scope of patent protection for the innovation.402 Even if patent claims could

 396. Mazer, 347 U.S. at 216–17.
 397. Mazer distinguished design patents from utility patents in relation to copyright
protections. Id. at 215 n.33, 217 (citing approvingly to Taylor Instrument for its holding
that utility patents and copyrights are mutually exclusive).
 398. See, e.g., Laureyssens v. Idea Group, Inc., 964 F.2d 131, 141 (2d Cir. 1992)
(patents on puzzle design narrowed scope of copyright in plaintiff’s puzzle).
 399. See, e.g., Brief for Respondent, supra note 200, at 21, 32–34, 43–44. The
categorical exclusivity of patent and copyright subject matters has a constitutional
character because the Constitution speaks of Congress as having power to grant exclusive
rights to authors and to inventors in “their respective writings and discoveries.” U.S.
CONST., art. I, § 8, cl. 8 (emphasis added).
 400. See, e.g., Lemley, supra note 17, at 22–27 (discussing the role of software patents
and copyrights and levels of abstraction as a way to distinguish their roles in software
protection).
 401. Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 996 (N.D. Cal. 2012).
 402. See, e.g., Mark A. Lemley, Software Patents and the Return of Functional
Claiming, 2013 WISC. L. REV. 905 (2013).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1288 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

have been drafted to cover lower level functionality, they need not be so
limited.

A third reason to be cautious about the patent or copyright subject matter
issue in computer program cases is that § 102(b) excludes from the scope
of copyright protection more than just patentable procedures, processes,
systems, and methods of operation.403 Mathematical innovations are among
the fundamental building blocks of knowledge that should be free for reuse
as abstract ideas under both copyright and patent law.404 Consider, for
instance, Benson’s algorithms for transforming binary coded decimals to
pure binary form, which the Court held was unpatentable as an abstract
idea.405 That algorithm would unquestionably be part of the SSO of any
program that embodied it. If the Benson algorithm is too abstract to qualify
for patent protection, it should be a strong candidate for ineligibility for
copyright protection under § 102(b) as an abstract mathematical procedure.

A fourth consideration that cuts against categorical exclusivity is that
software-related patents might have issued in error.406 This is especially
pertinent now that the pendulum on the patentability of software has gone
from almost-never-available in the 1960s to mid-1980s to almost-always-
available in the mid-1980s to the early 2000s.407 In the past decade, that

 403. See, e.g., Ho v. Taflove, 648 F.3d 489, 497 (7th Cir. 2011) (equation held
unprotectable by copyright law). Parts numbering systems are similarly ineligible for
copyright protection and likely unpatentable as well. See, e.g., Southco, Inc. v. Kanebridge
Corp., 390 F.3d 276, 281 (3d Cir. 2004) (parts numbering system unprotectable).
 404. Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 573 U.S. ___, 134 S. Ct. 2347, 2355
(2014) (patent); Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823, 842–43 (10th Cir.
1993) (copyright).
 405. Gottschalk v. Benson, 409 U.S. 63, 67, 71–72 (1972). The Supreme Court has
recently reaffirmed that the Benson algorithm was unpatentable subject matter. See Alice,
134 S. Ct. at 2354–55 (citing approvingly to Benson).
 406. See, e.g., Guthrie v. Curlett, 10 F.2d 725 (2d Cir. 1926) (invalidating patent on
consolidated tariff index held on novelty grounds). After losing the patent case, Guthrie
sued Curlett for copyright infringement. Although Guthrie’s copyright was valid, the court
held that Curlett only copied non-copyrightable functional elements and therefore had not
infringed. See Guthrie v. Curlett, 36 F.2d 694 (2d Cir. 1929). The invalid patent was not
mentioned in the copyright opinion. The patents to which Borland pointed in its brief to
the Supreme Court may also have issued in error. See Brief for Respondent, Lotus Dev.
Corp. v. Borland Int’l Inc., 516 U.S. 233 (1996) (No. 94-2003), 1995 WL 728538; see also
supra note 200 and accompanying text.
 407. For a discussion of the pre-1990 software patent case law, see Samuelson, Benson
Revisited, supra note 390, at 1048–1132. For a discussion of the case law on patent subject
matter in the 1990s and 2000s, see Michael Risch, Everything is Patentable, 75 TENN. L.
REV. 591 (2008).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1289

pendulum has swung back to sometimes-available-but-sometimes-not.408
During the mid-1980s to the mid-2000s, during the almost-always-available
period, the USPTO issued a large number of patents for software
innovations.409 Quite a few of these have been struck down in the aftermath
of the Supreme Court’s decision in Alice Corp. v. CLS Bank Int’l, which
affirmed the invalidation of patents on software-implemented method and
system claims for managing settlement risks for financial transactions.410

B. THE ORACLE DECISION’S ANALYSIS OF COPYRIGHT-PATENT

BOUNDARIES WAS FLAWED

Utility patent and copyright laws are, of course, separate laws, and each
has a different role to play in protecting intellectual creations, including
computer programs. Even if the possibility of patents on certain types of
software innovations should not automatically mean that those innovations
cannot be copyrighted, competition and innovation policies, as well as
freedom of expression policy, should caution against collapsing legal
boundaries so that there is substantial or complete overlap in copyright and
utility patent subject matters.411

Yet, the CAFC seems to have done just that in response to Google’s
API-as-patent-not-copyright-subject-matter argument.412 It invoked the
Mazer dictum that “[n]either the Copyright Statute nor any other says that
because a thing is patentable it may not be copyrighted,”413 seemingly
untroubled by the idea of overlapping utility patent and copyright
protections for API designs. Had the CAFC read Mazer more carefully,
however, it would have noticed that in the very next sentence, the Court
reaffirmed that utility patents and copyrights were quite different because
copyright law cannot be used to protect patentable ideas, only authorial

 408. See, e.g., DDR Holdings LLC v. Hotels.com L.P., 773 F.3d 1245, 1259 (Fed. Cir.
2014) (upholding software patent and finding no § 101 subject matter problems). See infra
note 410 for examples of software patents that have been struck down since Alice.
 409. See, e.g., Brief Amicus Curiae of IEEE-USA in Support of Grant of Certiorari at
2, Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 573 U.S. ___, 134 S. Ct. 2347 (2014) (No. 13-
298), 2013 WL 5555082 (nearly one million software patents have issued).
 410. See 134 S. Ct. 2347, 2360 (2014). For patents that have been struck down since
Alice, see, for example, Content Extraction & Transmission LLC v. Wells Fargo Bank, 776
F.3d 1343 (Fed. Cir. 2014) (data storage method); Ultramercial, Inc. v. Hulu LLC, 772
F.3d 709 (Fed. Cir. 2014) (Internet advertising method); buySAFE, Inc. v. Google Inc.,
765 F.3d 1350 (Fed. Cir. 2014) (transaction guaranty method).
 411. See, e.g., Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the
Software Industry, 89 CALIF. L. REV. 1, 27 (2001) (“As patent and copyright law overlap
more and more, it becomes critical that they take account of each other.”).
 412. Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1379–81 (Fed. Cir. 2014).
 413. Id. at 1380 (quoting Mazer v. Stein, 347 U.S. 201, 217 (1954)).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1290 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

expression.414 Mazer also cited approvingly to Baker-inspired precedents
holding that, as the Court put it, “the Mechanical Patent Law and Copyright
Laws are mutually exclusive.”415

The CAFC discussed the patent-not-copyright-subject-matter issue at
the very end of its Oracle decision, characterizing it as one of Google’s
“policy-based arguments.”416 These arguments, the CAFC said, “appear
premised on the belief that copyright is not the correct legal ground upon
which to protect intellectual property rights in software programs,” as
though “patent protection for such programs, with its insistence on
nonobviousness and shorter terms of protection, might be more applicable
and sufficient.”417 But that was not what Google was arguing. Its two-fold
point was that patents were a more appropriate way than copyright to protect
APIs and that copyright could protect the code that implemented an API,
but not the API.418

To support its view that copyright was more suitable for protecting
programs than patents, the CAFC cited two journalistic articles.419 With a
rhetorical flourish, the CAFC went on to say that until the Supreme Court
or Congress decided to alter IP rules, it felt bound to enforce copyright
protection for programs and “decline[d] any invitation to declare that
protection of software programs should be the domain of patent law, and
only patent law.”420 The CAFC should instead have recognized that “the
existence of software patents should make courts less willing to extend the

 414. Mazer, 347 U.S. at 217 (“Unlike a patent, a copyright gives no exclusive right to
the art disclosed.”).
 415. Id. at 215 n.33 (citing Taylor Instrument Cos. v. Fawley-Brost Co., 139 F.2d 98
(7th Cir. 1943) and Brown Instrument Co. v. Warner, 161 F.2d 910 (D.C. Cir. 1947)). The
Court also cited two others of Baker’s progeny, Fulmer v. United States, 103 F. Supp. 1021
(Ct. Cl. 1952) (making parachute did not infringe on copyright in parachute design) and
Muller v. Triborough Bridge Authority, 43 F. Supp. 298 (S.D.N.Y. 1942) (construction of
a bridge did not infringe on copyright in bridge design plan). Mazer, 347 U.S. at 217 n.39.
These decisions are also more consistent with exclusivity of copyright and patent subject
matter than to overlap.
 416. Oracle, 750 F.3d at 1379–81.
 417. Id. at 1379–80.
 418. Masnick, supra note 366.
 419. Oracle, 750 F.3d at 1380. The CAFC cited to one article published in the
Economist magazine and another in the Washington Post in support of copyright as the
better form of protection for software. Id. While the CAFC correctly cited to my CONTU
Revisited article, supra note 2, as recommending a sui generis form of protection for
programs instead of copyright, it did not cite the most relevant of my articles in which I
affirm that copyright protects program code, but should not protect interfaces necessary for
interoperability. See Samuelson, Why Copyright Excludes Systems, supra note 124, at
1962–74.
 420. Id. at 1381.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1291

coverage of copyright law to ideas and functional elements of programs and
more willing to engage in a strict filtration analysis,”421 especially in cases
involving claims of nonliteral infringements.

The CAFC’s Oracle opinion may reflect that court’s anxiety that
software would be underprotected by IP law if it ruled in Google’s favor so
soon after the Supreme Court’s Alice decision substantially cut back on the
availability of patent protection for software-related inventions.422 But the
CAFC’s Oracle decision is at odds not only with Baker and a fair reading
of Mazer, but also with two of the CAFC’s prior decisions in software
copyright cases as well as other software copyright decisions.423

C. AN ALTERNATIVE APPROACH TO CONCEPTUALIZING THE ROLES OF

COPYRIGHTS AND PATENTS IN PROTECTING SOFTWARE INNOVATIONS

A more appropriate way to conceptualize the respective roles of utility
patent and copyright protection for computer programs may be one akin to
the approach the Supreme Court took when presented with an argument
about a potential overlap between patent and trademark protection in
TrafFix Devices, Inc. v. Marketing Displays, Inc.424 TrafFix argued that the
existence of an expired patent on a dual spring design to enable roadside
signs to withstand and bounce back from big gusts of wind meant that the
patented design was ineligible to be protectable as trade dress.425 The Court
considered the expired patent to be “strong evidence” that the spring design
was too functional to be eligible for trademark protection.426 However, it
did not go so far as to rule that the existence of a utility patent for a particular
design automatically disqualified it from trade dress protection.427

 421. Lemley, supra note 17, at 27; see also Karjala, supra note 384, at 66–69 (arguing
that patent protection is more appropriate than copyright for computer program SSO
because it is more functional, rather than aesthetic, in nature).
 422. Judge O’Malley, who wrote the Oracle decision, would have upheld as patentable
subject matter all of the claims that Alice made against CLS Bank. See CLS Bank Int’l v.
Alice Corp., 717 F.3d 1269, 1292–1321 (Fed. Cir. 2010). She joined three of the five pro-
patent opinions in Alice. Her concerns notwithstanding, the Supreme Court struck down all
of Alice’s claims. Neither Judge Plager nor Taranto participated in the CAFC’s Alice
decision.
 423. See, e.g., Atari Games, 975 F.2d at 838–39; see also Hutchins, 492 F.3d at 1383–
85. See supra note 384 for citations to other software copyright decisions distinguishing
copyright and patent protection for software.
 424. TrafFix Devices, Inc. v. Marketing Displays, Inc., 532 U.S. 23 (2001).
 425. Id. at 27–28.
 426. Id. at 29–30. The Court recognized that the very same aspect of the design that
MDI claimed as trade dress fell within the scope of the expired patent; it also considered
the description of the functional advantages of the design in the patent. Id. at 31–32.
 427. Id. at 35.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1292 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

Along similar lines, courts in software copyright cases, when presented
with evidence that utility patents have issued for the same type of nonliteral
element of program design as the plaintiff argues is protectable expression,
should consider those patents as relevant evidence about whether the
innovation in question is a method or system excluded from copyright
protection under § 102(b).428

Consistent with TrafFix and numerous software copyright decisions, the
District Court pointed to the patents Oracle and its predecessor Sun
Microsystems had obtained on some aspects of the Java API as a reason not
to extend copyright protection to them,429 asserting that “this trial
showcases the distinction between copyright protection and patent
protection” for computer program innovations.430 The issue “loom[ed]
large, where, as here, the vast majority of the code was not copied and the
copyright owner must resort to alleging that the accused stole the ‘structure,
sequence, and organization’ of the work.”431 The court later noted that
software copyright cases decided in recent years had moved away from
using “SSO” as a characterization of protectable elements of programs out
of “fidelity to Section 102(b) and recognition of the danger of conferring a
monopoly by copyright over what Congress expressly warned should be
conferred only by patent.”432

The District Court recognized that copyright owners might try to claim
exclusive rights to “a functional system, process or method of operation that
belongs in the realm of patents, not copyrights.”433 This troubled the District
Court because patent protection, when available, was of much shorter
duration than copyright, and unlike copyrights which provide automatic
protection, patents are only available to those who apply and have their
claims examined for novelty and nonobviousness, more stringent standards
of eligibility than copyright requires.434 To buttress its opinion on this point,
the District Court quoted from Baker and Sega about the dangers of
allowing creators to get patent-like monopolies through copyright

 428. See, e.g., Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 997–98 (N.D. Cal.
2012). Courts might also usefully consider whether the possible ineligibility of program
SSO for patenting under Alice and other precedents on account of abstractness should mean
that this nonliteral element of a program is also ineligible for copyright protection under
§ 102(b).
 429. See id. at 996.
 430. Id. at 984.
 431. Id.
 432. Id. at 996.
 433. Id. at 984.
 434. See id.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1293

protection.435 It noted that large numbers of patents had issued in recent
years for software innovations, and indeed, both Oracle and Sun had gotten
patents on some aspects of the Java API (although Oracle did not claim that
Google infringed any of them).436

The District Court noted that Oracle made much of the creativity that
went into the design of the Java APIs, but this was beside the point.

Inventing a new method to deliver a new output can be creative,
even inventive, including the choices of inputs needed and outputs
returned But such inventions—at the concept and
functionality level—are protectable only under the Patent
Act Based on a single implementation, Oracle would bypass
this entire patent scheme and claim ownership over any and all
ways to carry out methods for 95 years437

The District Court did not consider the patent-not-copyright-subject-
matter issue as an independent ground for its ruling. Rather, the
consideration merely reinforced the court’s conclusion that the command
structure at issue was a system or method of operation excluded from
copyright protection under § 102(b). Closer scrutiny of interface patents and
a comparison of them with the SSO at issue in Oracle might have made that
court’s analysis more persuasive. Nonetheless the District Court’s approach
to the patent-not-copyright-subject-matter issue was much sounder than the
CAFC’s.

D. SOFTWARE DEVELOPERS ATTAIN COMPETITIVE ADVANTAGE

BEYOND IP RIGHTS

The CAFC should have been less anxious than they seemingly were in
Oracle about the receding role of patents and the necessarily thin scope of
copyright protection for program innovations because software developers
have a multi-faceted, nuanced approach to attaining competitive advantage
in the marketplace. A recent empirical study demonstrates that software
entrepreneurs consider first mover advantages the most important way to
attain advantage.438 Complementary assets (e.g., providing services or
customization) are next most important.439 Entrepreneurs rated copyrights,
trademarks, and trade secrecy as equally significant in protecting software,

 435. See id. at 984, 994–96.
 436. Id. at 996.
 437. Id. at 998.
 438. Stuart J.H. Graham et al., High Technology Entrepreneurs and the Patent System:
Results of the 2008 Berkeley Patent Survey, 24 BERKELEY TECH. L.J. 1255, 1290 (2009).
 439. Id.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1294 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

but only between slightly and moderately important to gaining competitive
advantage.440 Only a minority of software entrepreneurs owned or were
seeking patents.441 Software patents were rated just over slightly
important.442 Patents were mainly valued as useful assets for impressing
investors.443 It is also important to recognize that software developers are
often able to recoup investments through business models that depend very
little on intellectual property rights,444 such as Google’s ad-revenue strategy
for recouping its investment in the Android platform.445 IP rights play a
more modest role in protecting software innovations than many IP lawyers
might expect.

VI. REFINING THE TESTS FOR SOFTWARE COPYRIGHT
INFRINGEMENT

This Article has analyzed various doctrinal approaches that courts have
taken in adjudicating infringement claims in software copyright cases.
Courts have generally sought to interpret copyright rules in keeping with
traditional principles of that law, but also with an eye to providing sufficient
protection for programs to induce investments in their development while
leaving breathing room for subsequent programmers to build on what has
come before in developing competing or complementary innovations. The
outcomes of the software copyright decisions have generally been
consistent, even though the doctrinal hooks courts have employed have
differed in some respects.446

Many disputes have been resolved by applying Altai’s AFC test, while
other cases have relied on the § 102(b) method and process exclusions, the
merger doctrine, or fair use. Regardless of which doctrinal approach courts
have used, judges have generally taken care to ensure that copyright law
should not be interpreted to grant patent-like protection to program
innovations. If no single approach to judging software copyright claims has

 440. Id.
 441. Id. at 1279. Venture-backed startups were more likely than other software firms
to own or seek patents. Id.
 442. Id. at 1292, 1303.
 443. See id. at 1308–09.
 444. See Pamela Samuelson, The Uneasy Case for Software Copyrights Revisited, 79
GEO. WASH. U. L. REV. 1746, 1776–81 (2011) (giving examples of developments in the
software industry, such as the provision of software as a service instead of a product, that
lessen the need for copyright protections to attain competitive advantage).
 445. Google does not charge money for the installation of Android on mobile devices.
Oracle, 750 F.3d at 1351.
 446. See, e.g., BAND & KATOH, INTERFACES ON TRIAL 2.0, supra note 10, at 45–46.

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1295

emerged, this is perhaps unsurprising given that copyright doctrines largely
evolved to address issues posed by cases involving expressive works of art
and literature, not functional processes such as programs. As Altai noted,
programs are square pegs that courts must try to fit in the round holes of
copyright.447 But for the Supreme Court’s Baker v. Selden decision, which
established that copyright protects authorial expression, not functionality,
courts would be floundering much more than they have.

What we can say with considerable confidence is that Altai and its AFC
test for software copyright infringement were vast improvements over the
Whelan framework and test for infringement under which every design
decision a programmer made was protectable expression except for the rare
elements as to which no alternative choices existed. Altai recognized that
the utilitarian nature of programs meant that the scope of software copyright
protection must necessarily be thin. Altai identified several categories of
unprotectable elements of programs—efficient designs, externally
constrained designs, elements common to works of that kind (i.e., scenes a
faire elements) and public domain components—and directed that those
elements be filtered out before assessing whether the defendant had
infringed a software copyright. The main criticism this Article has levied
against Altai concerned its failure to mandate, in addition, filtration of
§ 102(b) methods and processes.

Courts have sometimes applied the § 102(b) exclusions, with or without
reference to the AFC test, when plaintiffs have alleged infringement based
on copying of unprotectable methods or procedures. Among the elements
of programs that have been adjudged unprotectable under § 102(b) are
algorithms, program behavior, and command structures needed for
achieving interoperability. The merger doctrine has complemented § 102(b)
exclusions in numerous cases in which defendants used the necessary
incidents to reimplement the same functionality as an existing program.
This Article has called for explicit recognition of a merger of function and
expression doctrine to supplement the merger of idea and expression and of
fact and expression doctrines established in the case law. It has also
recognized that copyright and patent law should play different roles in the
legal protection of computer programs, even though the boundary lines
between these laws, as applied to programs, has proven more elusive to
articulate than in respect of other copyright subject matters. The Article
concurs in an approach that recognizes that the patentability of some
program innovations, as well as the unpatentability of abstract program

 447. Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1296 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

designs, should be taken into account in assessing the proper scope of
copyright protection in software.

There is, of course, a simpler way to address software copyright
infringement claims. It would begin by recognizing that copyright law can
and does protect software developers against market-destructive
appropriations of their products through the well-established rule that
protects source and object code from illicit copying.448 Similarly established
is the protectability of audiovisual and other conventionally expressive
content that may be displayed when computers are executing program
instructions.449 Making minor changes to program texts, such as changing
variable names, rearranging instructions, or recompiling the code to
disguise infringement should also not be tolerated. Translation of programs
from one programming language to another or other forms of slavish
copying may also qualify as infringement.450 The main value of copyright
protection for software developers lies in protecting these aspects of
programs. If copyright law did nothing more than safeguard these literal and
nonliteral elements of programs, the software industry would very likely
still thrive. Limiting the scope of software copyrights to these protectable
elements would likely make a special test for infringement of these works
unnecessary.

Yet, courts have invested so much in articulating and applying tests for
software copyright infringement that they may be reluctant to abandon these
tests. Although the Altai AFC test has thus far been the most stable and
widely accepted approach to judging software copyright infringement,
several courts have adapted it. Some courts, for instance, have decided that
the first step’s construction of an abstractions hierarchy for the plaintiff’s
program is unnecessary when the claim of infringement is based on certain
specific elements of the defendant’s program.451 Courts then proceed to
consider whether various limiting doctrines of copyright law apply to those
elements, in keeping with the Altai filtration step. In some cases, application

 448. See supra text accompanying note 130; see also Weinreb, supra note 10, at 1250.
 449. See, e.g., Williams Electronics, Inc. v. Artic Int’l, Inc., 685 F.2d 870 (3d Cir.
1982) (videogame graphics protectable).
 450. The focus in most software infringement cases has been on the reproduction right,
but modifying another firm’s software and then selling the modified version to the public
would also likely infringe the derivative work right. See, e.g., Allen-Myland, Inc. v. IBM
Corp., 746 F. Supp. 520 (E.D. Pa. 1990).
 451. See, e.g., Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1373 (10th Cir. 1997) (“Where,
as here, the alleged infringement constitutes the admitted literal copying of a discrete,
easily-conceptualized portion of a work, we need not perform complete abstraction-
filtration-comparison analysis.”).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1297

of the limiting doctrines have made the third step unnecessary, for the
plaintiff’s claims failed because the doctrines precluded protection for the
elements which the plaintiff claimed were her expressions.452 Some courts
have adapted the Altai second step to filter out procedures, processes,
methods of operation, and systems.453 Only rarely do courts specify which
“golden nuggets” of expression remain after the filtration step, even though
Altai’s third step had directed these elements of programs to be the starting
point of the final step of assessing infringement.

I propose the following refinement of the Altai test for software
copyright infringement. The first step would require the plaintiff to specify
exactly which elements of her program that she alleges as the basis of the
infringement claim. In most cases, it will be unnecessary to construct a
hierarchy of abstractions for the program as a whole because only certain
elements are alleged to infringe. A second step should inquire which, if any,
allegedly infringing elements lie outside the scope of copyright protection
under various limiting doctrines, such as the exclusion of (a) unoriginal
elements; (b) abstract ideas, concepts and principles under § 102(b); (c)
facts, know-how, and other public domain elements; (d) common elements
for works of that kind, standard programming techniques, and constraints
based on market demands under the scenes a faire doctrine; (e) efficient
design elements; (f) command structures and APIs necessary for achieving
interoperability with other programs or hardware; (g) other instances of
merger of function and expression; and (h) procedures, processes, systems,
and methods of operation under § 102(b). This would adapt the Altai AFC
test to make its filtration step more rigorous, excluding a wider range of
functional design elements in programs.454

 452. Id. at 1376 (“In sum, although Mitel’s values constitute non-arbitrary original
expression, they are unprotectable as scenes a faire because they were dictated by external
functionality and compatibility requirements of the computer and telecommunications
industries.”).
 453. See, e.g., Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823, 842–43 (10th Cir.
1993).
 454. Under this broader filtration analysis, Rand Jaslow might not have been held an
infringer as to the dental lab program he developed to compete with Whelan. Jaslow
certainly infringed Whelan’s copyright when selling her program to third parties, but it is
less clear, given how the law has evolved, that his competing program infringed. The courts
in Whelan indicated that Jaslow did not directly translate Whelan’s program from one
language or another (which might justify the finding of infringement). Whelan, 797 F.2d
at 1228 (“Dr. Moore testified that although the Dentcom program was not a translation of
the Dentalab system, the programs were similar in three significant respects.”). Had the
AFC test been applied in Whelan, the file structures Jaslow used, for instance, may have
been efficient for the tasks at hand. The court in Altai rejected an overall structural
similarity claim on scenes a faire grounds, which might have been true in Whelan also. The

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1298 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

In some cases, as in Lexmark and Borland, there will be no need for a
third step because the filtration step results in a judicial conclusion that even
if the defendant copied something from the plaintiff’s work, the expressive
elements of the plaintiff’s program were not copied. Yet in other cases,
courts should proceed to consider whether the defendant copied a sufficient
quantum of expression from the plaintiff’s work to be held as an infringer.
Adoption of this refined Altai test would be consistent with the
overwhelming majority of software copyright cases and with longstanding
principles of U.S. copyright law. It would also promote competition and
ongoing innovation in the software industry, in keeping with the
constitutional goal of copyright of promoting progress in science and useful
arts.

The CAFC’s Oracle decision obviously took a very different approach.
This Article has shown that the CAFC’s Oracle misinterpreted Altai,
misunderstood § 102(b), and misapplied the merger doctrine, as well as
major court rulings that have applied these rules. The Oracle decision is
contrary to Supreme Court rulings and to the CAFC’s own precedents,
especially in treating utility patent and copyright laws as providing
overlapping protections for computer program innovations.455 The CAFC
also failed to grasp that an API that specifies functions that a program is
designed to carry out is fundamentally different from the copyright-
protectable program that implements that API in independently written
code.

Some may think that the Oracle decision, erroneous as it is, will have
little impact on subsequent cases. The decision is, after all, an outlier in the
case law and involves complicated facts. Software copyright cases will,
moreover, generally go to the regional circuits, not to the CAFC, which has
no jurisdiction in copyright cases except when there is a patent claim in the
case. But Oracle has introduced new uncertainties in the law of software

similarities in the operation of certain modules—order entry, invoicing, accounts
receivable, end of day procedure, and end of month procedure—appear to be automations
of Jaslow’s business processes that should have been filtered out under § 102(b). See id.
 455. The CAFC remanded Oracle for retrial of Google’s fair use defense. Oracle Am.,
Inc. v. Google Inc., 750 F.3d 1339, 1372–77(Fed. Cir. 2014). It concluded that “this is not
a case in which the record contains sufficient factual findings on which we could base a de
novo assessment of Google’s affirmative defense of fair use.” Id. at 1377. It also indicated
that compatibility considerations could be considered in the fair use context. Id. at 1376–77.
The CAFC characterized Oracle’s argument for granting summary judgment on fair use as
“not without force,” but ultimately concluded that a new trial was needed. Id. On remand,
a jury found Google’s reimplementation of the Java APIs constituted fair use. Oracle Am.,
Inc. v. Google Inc., No. C 10-03561 WHA, 2016 WL 3181206 (N.D. Cal. June 8, 2016),
appeal docketed, Nos. 17-1118, -1202 (Fed. Cir. Nov. 14, 2016).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

2016] REFINING INFRINGEMENT TESTS FOR SOFTWARE 1299

copyrights, and software companies now have reasons to litigate to test the
CAFC’s resurrection of the Whelan approach to assessing infringement.
Given how many software patents are out there, it may be easy for a
plaintiff’s lawyer to find one in a client’s portfolio or for the client to buy
one so that the complaint may allege a defendant infringed patents as well
as copyrights.456 In such cases, the appeals would go to the CAFC instead
of to a regional circuit.

In the aftermath of Alice and court decisions striking down software
patents, it may be tempting for courts to interpret the scope of copyright
protection expansively, as the CAFC did in Oracle, because the role of
patents in protecting program innovations is receding. Under a kind of
conservation of IP incentives theory, copyrights might seem to need to be
broader to make up for the fact that patents are providing less protection for
program innovations. Copyright does important work in protecting
programs, but as the Second Circuit recognized in Altai, “fundamental
tenets” of this law should not be distorted to fill a perceived gap in legal
protection for programs.457

If software developers need some additional legal protection for
industrial design elements of programs that neither copyright nor patent law
can provide, they should take their case to fill that gap to Congress, not use
the courts to fill the gap through expansive interpretations of copyright
protections.458 Sui generis forms of protection for software have been
proposed in the past, and perhaps this approach should be reconsidered.459
Industrial design laws typically provide a relatively short term of protection
against market-destructive appropriations.460 At present, however,
competition and innovation seem to be thriving in the software industry
without additional legal protections. Without substantial evidence to

 456. See supra note 30 (discussing cases subsequent to Oracle in which plaintiff’s
lawyers have learned this lesson).
 457. See Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992)
(“While incentive based arguments in favor of broad copyright protection are perhaps
attractive from a pure policy perspective, ultimately, they have a corrosive effect on certain
fundamental tenets of copyright doctrine.” (citation omitted)).
 458. See id. (“[T]he resolution of this specific issue could benefit from further
legislative investigation”).
 459. See, e.g., Samuelson et al., Manifesto, supra note 10, 2405–20 (proposing a short
term of sui generis protection for the industrial compilations of applied know-how
embodied in computer programs).
 460. See, e.g., Reichman, supra note 1, at 2459–65 (discussing European industrial
design laws).

FINAL FORMAT FOR AUTHOR REVIEW (DO NOT DELETE) 7/18/2017 2:40 PM

1300 BERKELEY TECHNOLOGY LAW JOURNAL [Vol. 31:2

support a change in the law,461 the courts should continue to apply copyright
protections for software in keeping with Altai, its progeny, and traditional
principles of copyright law.

 461. See, e.g., Robert Kastenmeier & Michael Remington, The Semiconductor Chip
Protection Act: A Swamp or Firm Ground?, 70 MINN. L. REV. 417, 439–42 (1985)
(evidence of industry needs, among other things, should inform expansions of IP rules).

